000143879 001__ 143879
000143879 005__ 20240229112611.0
000143879 0247_ $$2doi$$a10.1186/s12859-019-2851-0
000143879 0247_ $$2pmid$$apmid:31138115
000143879 0247_ $$2altmetric$$aaltmetric:61308470
000143879 037__ $$aDKFZ-2019-01441
000143879 041__ $$aeng
000143879 082__ $$a610
000143879 1001_ $$00000-0003-1503-437X$$aFeuerbach, Lars$$b0$$eFirst author
000143879 245__ $$aTelomereHunter - in silico estimation of telomere content and composition from cancer genomes.
000143879 260__ $$aHeidelberg$$bSpringer$$c2019
000143879 3367_ $$2DRIVER$$aarticle
000143879 3367_ $$2DataCite$$aOutput Types/Journal article
000143879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682433785_10671
000143879 3367_ $$2BibTeX$$aARTICLE
000143879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143879 3367_ $$00$$2EndNote$$aJournal Article
000143879 520__ $$aEstablishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets.We here present TelomereHunter, a software for the detailed characterization of telomere maintenance mechanism footprints in the genome. The tool is implemented for the analysis of large cancer genome cohorts and provides a variety of diagnostic diagrams as well as machine-readable output for subsequent analysis. A novel key feature is the extraction of singleton telomere variant repeats, which improves the identification and subclassification of the alternative lengthening of telomeres phenotype. We find that whole genome sequencing-derived telomere content estimates strongly correlate with telomere qPCR measurements (r = 0.94). For the first time, we determine the correlation of in silico telomere content quantification from whole genome sequencing and whole genome bisulfite sequencing data derived from the same tumor sample (r = 0.78). An analogous comparison of whole exome sequencing data and whole genome sequencing data measured slightly lower correlation (r = 0.79). However, this is considerably improved by normalization with matched controls (r = 0.91).TelomereHunter provides new functionality for the analysis of the footprints of telomere maintenance mechanisms in cancer genomes. Besides whole genome sequencing, whole exome sequencing and whole genome bisulfite sequencing are suited for in silico telomere content quantification, especially if matched control samples are available. The software runs under a GPL license and is available at https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html .
000143879 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000143879 588__ $$aDataset connected to CrossRef, PubMed,
000143879 7001_ $$0P:(DE-He78)a82e5b3870b674f83ff39df31c487ac7$$aSieverling, Lina$$b1$$udkfz
000143879 7001_ $$0P:(DE-He78)307c43dc6b7bbf6ca6c8a29fdeb01851$$aDeeg, Katharina I$$b2$$udkfz
000143879 7001_ $$0P:(DE-HGF)0$$aGinsbach, Philip$$b3
000143879 7001_ $$0P:(DE-He78)135e8c8d1dd1b66b8127c3d1e3a9b6a0$$aHutter, Barbara$$b4$$udkfz
000143879 7001_ $$0P:(DE-He78)e84b3187ddd3529f884082e30f228c66$$aBuchhalter, Ivo$$b5$$udkfz
000143879 7001_ $$0P:(DE-HGF)0$$aNorthcott, Paul A$$b6
000143879 7001_ $$0P:(DE-He78)3ad0b83338ba5df15b5701e181f58129$$aMughal, Sadaf S$$b7$$udkfz
000143879 7001_ $$0P:(DE-He78)97208bef945f0ab6bf33ed9925685de4$$aChudasama, Priya$$b8$$udkfz
000143879 7001_ $$0P:(DE-He78)157277fe62f07df1732f9d126a51d1b9$$aGlimm, Hanno$$b9$$udkfz
000143879 7001_ $$0P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250$$aScholl, Claudia$$b10$$udkfz
000143879 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b11$$udkfz
000143879 7001_ $$0P:(DE-He78)f0144d171d26dbedb67c9db1df35629d$$aFröhling, Stefan$$b12$$udkfz
000143879 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b13$$udkfz
000143879 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David T W$$b14$$udkfz
000143879 7001_ $$0P:(DE-He78)94de5f7413279464b6e738d91dfae1eb$$aRippe, Karsten$$b15$$udkfz
000143879 7001_ $$0P:(DE-He78)fc949170377b58098e46141d95c72661$$aBrors, Benedikt$$b16$$eLast author$$udkfz
000143879 773__ $$0PERI:(DE-600)2041484-5$$a10.1186/s12859-019-2851-0$$gVol. 20, no. 1, p. 272$$n1$$p272$$tBMC bioinformatics$$v20$$x1471-2105$$y2019
000143879 909CO $$ooai:inrepo02.dkfz.de:143879$$pVDB
000143879 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-1503-437X$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a82e5b3870b674f83ff39df31c487ac7$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)307c43dc6b7bbf6ca6c8a29fdeb01851$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)135e8c8d1dd1b66b8127c3d1e3a9b6a0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e84b3187ddd3529f884082e30f228c66$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3ad0b83338ba5df15b5701e181f58129$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97208bef945f0ab6bf33ed9925685de4$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)157277fe62f07df1732f9d126a51d1b9$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0144d171d26dbedb67c9db1df35629d$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)94de5f7413279464b6e738d91dfae1eb$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000143879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fc949170377b58098e46141d95c72661$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000143879 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000143879 9141_ $$y2019
000143879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOINFORMATICS : 2017
000143879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143879 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143879 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000143879 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000143879 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000143879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000143879 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000143879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143879 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143879 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143879 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000143879 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000143879 9201_ $$0I:(DE-He78)B066-20160331$$kB066$$lB066 Chromatin-Netzwerke$$x1
000143879 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x2
000143879 9201_ $$0I:(DE-He78)B340-20160331$$kB340$$lTranslationale Medizinische Onkologie$$x3
000143879 9201_ $$0I:(DE-He78)B290-20160331$$kB290$$lAngewandte Funktionelle Genomik$$x4
000143879 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x5
000143879 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPediatric Glioma$$x6
000143879 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x7
000143879 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x8
000143879 9201_ $$0I:(DE-He78)L301-20160331$$kL301$$lDKTK Dresden$$x9
000143879 9201_ $$0I:(DE-He78)B280-20160331$$kB280$$lB280 Translationale funktionelle Krebsgenomik$$x10
000143879 980__ $$ajournal
000143879 980__ $$aVDB
000143879 980__ $$aI:(DE-He78)B330-20160331
000143879 980__ $$aI:(DE-He78)B066-20160331
000143879 980__ $$aI:(DE-He78)B080-20160331
000143879 980__ $$aI:(DE-He78)B340-20160331
000143879 980__ $$aI:(DE-He78)B290-20160331
000143879 980__ $$aI:(DE-He78)B060-20160331
000143879 980__ $$aI:(DE-He78)B360-20160331
000143879 980__ $$aI:(DE-He78)L101-20160331
000143879 980__ $$aI:(DE-He78)B062-20160331
000143879 980__ $$aI:(DE-He78)L301-20160331
000143879 980__ $$aI:(DE-He78)B280-20160331
000143879 980__ $$aUNRESTRICTED