001     143881
005     20240229112611.0
024 7 _ |a 10.1371/journal.pone.0217477
|2 doi
024 7 _ |a pmid:31136621
|2 pmid
037 _ _ |a DKFZ-2019-01443
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a van de Putte, Romy
|0 0000-0003-0977-2771
|b 0
245 _ _ |a Exome chip association study excluded the involvement of rare coding variants with large effect sizes in the etiology of anorectal malformations.
260 _ _ |a San Francisco, California, US
|c 2019
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1559892530_10960
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Anorectal malformations (ARM) are rare congenital malformations, resulting from disturbed hindgut development. A genetic etiology has been suggested, but evidence for the involvement of specific genes is scarce. We evaluated the contribution of rare and low-frequency coding variants in ARM etiology, assuming a multifactorial model.We analyzed 568 Caucasian ARM patients and 1,860 population-based controls using the Illumina HumanExome Beadchip array, which contains >240,000 rare and low-frequency coding variants. GenomeStudio clustering and calling was followed by re-calling of 'no-calls' using zCall for patients and controls simultaneously. Single variant and gene-based analyses were performed to identify statistically significant associations, applying Bonferroni correction. Following an extra quality control step, candidate variants were selected for validation using Sanger sequencing.When we applied a MAF of ≥1.0%, no variants or genes showed statistically significant associations with ARM. Using a MAF cut-off at 0.4%, 13 variants initially reached statistical significance, but had to be discarded upon further inspection: ten variants represented calling errors of the software, while the minor alleles of the remaining three variants were not confirmed by Sanger sequencing.Our results show that rare and low-frequency coding variants with large effect sizes, present on the exome chip do not contribute to ARM etiology.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wijers, Charlotte H W
|b 1
700 1 _ |a Reutter, Heiko
|b 2
700 1 _ |a Vermeulen, Sita H
|b 3
700 1 _ |a Marcelis, Carlo L M
|b 4
700 1 _ |a Brosens, Erwin
|b 5
700 1 _ |a Broens, Paul M A
|b 6
700 1 _ |a Homberg, Markus
|b 7
700 1 _ |a Ludwig, Michael
|b 8
700 1 _ |a Jenetzky, Ekkehart
|0 P:(DE-He78)949e730cbc09d0e60687edbab1755d60
|b 9
|u dkfz
700 1 _ |a Zwink, Nadine
|b 10
700 1 _ |a Sloots, Cornelius E J
|b 11
700 1 _ |a de Klein, Annelies
|b 12
700 1 _ |a Brooks, Alice S
|b 13
700 1 _ |a Hofstra, Robert M W
|b 14
700 1 _ |a Holsink, Sophie A C
|b 15
700 1 _ |a van der Zanden, Loes F M
|b 16
700 1 _ |a Galesloot, Tessel E
|b 17
700 1 _ |a Tam, Paul Kwong-Hang
|b 18
700 1 _ |a Steehouwer, Marloes
|b 19
700 1 _ |a Acuna-Hidalgo, Rocio
|b 20
700 1 _ |a Vorst, Maartje van de
|b 21
700 1 _ |a Kiemeney, Lambertus A
|b 22
700 1 _ |a Garcia-Barceló, Maria-Mercè
|b 23
700 1 _ |a de Blaauw, Ivo
|b 24
700 1 _ |a Brunner, Han G
|b 25
700 1 _ |a Roeleveld, Nel
|b 26
700 1 _ |a van Rooij, Iris A L M
|b 27
773 _ _ |a 10.1371/journal.pone.0217477
|g Vol. 14, no. 5, p. e0217477 -
|0 PERI:(DE-600)2267670-3
|n 5
|p e0217477 -
|t PLOS ONE
|v 14
|y 2019
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:143881
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)949e730cbc09d0e60687edbab1755d60
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21