001     143905
005     20240229123017.0
024 7 _ |a 10.1002/jmri.26794
|2 doi
024 7 _ |a pmid:31179595
|2 pmid
024 7 _ |a 1053-1807
|2 ISSN
024 7 _ |a 1522-2586
|2 ISSN
037 _ _ |a DKFZ-2019-01463
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Nath, Vishwesh
|0 0000-0002-6840-6205
|b 0
245 _ _ |a Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge.
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578487060_25709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jan;51(1):234-249
520 _ _ |a Fiber tracking with diffusion-weighted MRI has become an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are sensitive to the choice of processing method and tracking criteria.To assess the variability for an algorithm in group studies reproducibility is of critical context. However, reproducibility does not assess the validity of the brain connections. Phantom studies provide concrete quantitative comparisons of methods relative to absolute ground truths, yet do no capture variabilities because of in vivo physiological factors. The ISMRM 2017 TraCED challenge was created to fulfill the gap.A systematic review of algorithms and tract reproducibility studies.Single healthy volunteers.3.0T, two different scanners by the same manufacturer. The multishell acquisition included b-values of 1000, 2000, and 3000 s/mm2 with 20, 45, and 64 diffusion gradient directions per shell, respectively.Nine international groups submitted 46 tractography algorithm entries each consisting 16 tracts per scan. The algorithms were assessed using intraclass correlation (ICC) and the Dice similarity measure.Containment analysis was performed to assess if the submitted algorithms had containment within tracts of larger volume submissions. This also serves the purpose to detect if spurious submissions had been made.The top five submissions had high ICC and Dice >0.88. Reproducibility was high within the top five submissions when assessed across sessions or across scanners: 0.87-0.97. Containment analysis shows that the top five submissions are contained within larger volume submissions. From the total of 16 tracts as an outcome relatively the number of tracts with high, moderate, and low reproducibility were 8, 4, and 4.The different methods clearly result in fundamentally different tract structures at the more conservative specificity choices. Data and challenge infrastructure remain available for continued analysis and provide a platform for comparison.5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Schilling, Kurt G
|b 1
700 1 _ |a Parvathaneni, Prasanna
|b 2
700 1 _ |a Huo, Yuankai
|b 3
700 1 _ |a Blaber, Justin A
|b 4
700 1 _ |a Hainline, Allison E
|b 5
700 1 _ |a Barakovic, Muhamed
|b 6
700 1 _ |a Romascano, David
|b 7
700 1 _ |a Rafael-Patino, Jonathan
|b 8
700 1 _ |a Frigo, Matteo
|b 9
700 1 _ |a Girard, Gabriel
|b 10
700 1 _ |a Thiran, Jean-Philippe
|b 11
700 1 _ |a Daducci, Alessandro
|b 12
700 1 _ |a Rowe, Matt
|b 13
700 1 _ |a Rodrigues, Paulo
|b 14
700 1 _ |a Prčkovska, Vesna
|b 15
700 1 _ |a Aydogan, Dogu B
|b 16
700 1 _ |a Sun, Wei
|b 17
700 1 _ |a Shi, Yonggang
|b 18
700 1 _ |a Parker, William A
|b 19
700 1 _ |a Ould Ismail, Abdol A
|b 20
700 1 _ |a Verma, Ragini
|b 21
700 1 _ |a Cabeen, Ryan P
|b 22
700 1 _ |a Toga, Arthur W
|b 23
700 1 _ |a Newton, Allen T
|b 24
700 1 _ |a Wasserthal, Jakob
|0 P:(DE-He78)2b499e82770acce94ed7795a0b986354
|b 25
|u dkfz
700 1 _ |a Neher, Peter
|0 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
|b 26
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 27
|u dkfz
700 1 _ |a Savini, Giovanni
|b 28
700 1 _ |a Palesi, Fulvia
|b 29
700 1 _ |a Kaden, Enrico
|b 30
700 1 _ |a Wu, Ye
|b 31
700 1 _ |a He, Jianzhong
|b 32
700 1 _ |a Feng, Yuanjing
|b 33
700 1 _ |a Paquette, Michael
|b 34
700 1 _ |a Rheault, Francois
|b 35
700 1 _ |a Sidhu, Jasmeen
|b 36
700 1 _ |a Lebel, Catherine
|b 37
700 1 _ |a Leemans, Alexander
|b 38
700 1 _ |a Descoteaux, Maxime
|b 39
700 1 _ |a Dyrby, Tim B
|b 40
700 1 _ |a Kang, Hakmook
|b 41
700 1 _ |a Landman, Bennett A
|b 42
773 _ _ |a 10.1002/jmri.26794
|g p. jmri.26794
|0 PERI:(DE-600)1497154-9
|n 1
|p 234-249
|t Journal of magnetic resonance imaging
|v 51
|y 2020
|x 1522-2586
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143905
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)2b499e82770acce94ed7795a0b986354
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON IMAGING : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21