000143919 001__ 143919
000143919 005__ 20240229112612.0
000143919 0247_ $$2doi$$a10.2337/dc19-0292
000143919 0247_ $$2pmid$$apmid:31167893
000143919 0247_ $$2ISSN$$a0149-5992
000143919 0247_ $$2ISSN$$a1935-5548
000143919 0247_ $$2altmetric$$aaltmetric:65998034
000143919 037__ $$aDKFZ-2019-01477
000143919 041__ $$aeng
000143919 082__ $$a610
000143919 1001_ $$0P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aXuan, Yang$$b0$$eFirst author$$udkfz
000143919 245__ $$aAssociation of Serum Markers of Oxidative Stress With Incident Major Cardiovascular Events, Cancer Incidence and All-Cause Mortality in Type 2 Diabetes Patients: Pooled Results From Two Cohort Studies.
000143919 260__ $$aAlexandria, Va.$$bAssoc.$$c2019
000143919 3367_ $$2DRIVER$$aarticle
000143919 3367_ $$2DataCite$$aOutput Types/Journal article
000143919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636555163_20828
000143919 3367_ $$2BibTeX$$aARTICLE
000143919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143919 3367_ $$00$$2EndNote$$aJournal Article
000143919 520__ $$aOxidative stress plays an important role in the pathophysiology of type 2 diabetes mellitus (T2DM). However, associations of biomarkers of oxidative stress with diabetes complications have not yet been addressed in large cohort studies.Derivatives of reactive oxygen metabolites (d-ROMs) levels, a proxy for the reactive oxygen species burden, and total thiol levels (TTLs), a proxy for the reductive capacity, were measured in 2,125 patients with T2DM from two German cohort studies of almost equal size at baseline and 3-4 years later. Multivariable adjusted Cox proportional hazards models with time-dependent modeled d-ROMs levels and TTLs were used to assess the associations with incident major cardiovascular events (MCE), cancer incidence, and all-cause mortality.In total, 205, 179, and 394 MCE, cancer, and all-cause mortality cases were observed during 6-7 years of follow-up, respectively. Both oxidative stress biomarkers and the d-ROMs-to-TTL ratio were statistically significantly associated with all-cause mortality in both cohorts, and the pooled hazard ratios (HRs) and 95% CIs for top versus bottom tertiles were 2.10 (95% CI 1.43, 3.09) for d-ROMs levels, 0.59 (0.40, 0.87) for TTLs, and 2.50 (1.86, 3.36) for d-ROMs-to-TTL ratio. The d-ROMs-to-TTL ratio was also statistically significantly associated with incident MCE for top versus bottom tertile (1.65 [1.07, 2.54]), but this association did not persist after additional adjustment for chronic diseases. No associations with cancer were detected.The observed strong associations of both biomarkers with mortality suggest an important contribution of an imbalanced redox system to the premature mortality of patients with diabetes.
000143919 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000143919 588__ $$aDataset connected to CrossRef, PubMed,
000143919 7001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGào, Xin$$b1$$udkfz
000143919 7001_ $$0P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aAnusruti, Ankita$$b2$$udkfz
000143919 7001_ $$aHolleczek, Bernd$$b3
000143919 7001_ $$aJansen, Eugène H J M$$b4
000143919 7001_ $$0P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57$$aMuhlack, Dana Clarissa$$b5$$udkfz
000143919 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6$$udkfz
000143919 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b7$$eLast author$$udkfz
000143919 773__ $$0PERI:(DE-600)1490520-6$$a10.2337/dc19-0292$$gp. dc190292 -$$n8$$p1436-1445$$tDiabetes care$$v42$$x1935-5548$$y2019
000143919 909CO $$ooai:inrepo02.dkfz.de:143919$$pVDB
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000143919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000143919 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000143919 9141_ $$y2019
000143919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143919 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000143919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIABETES CARE : 2017
000143919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143919 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143919 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143919 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000143919 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143919 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bDIABETES CARE : 2017
000143919 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000143919 980__ $$ajournal
000143919 980__ $$aVDB
000143919 980__ $$aI:(DE-He78)C070-20160331
000143919 980__ $$aUNRESTRICTED