001     143919
005     20240229112612.0
024 7 _ |a 10.2337/dc19-0292
|2 doi
024 7 _ |a pmid:31167893
|2 pmid
024 7 _ |a 0149-5992
|2 ISSN
024 7 _ |a 1935-5548
|2 ISSN
024 7 _ |a altmetric:65998034
|2 altmetric
037 _ _ |a DKFZ-2019-01477
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Xuan, Yang
|0 P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87
|b 0
|e First author
|u dkfz
245 _ _ |a Association of Serum Markers of Oxidative Stress With Incident Major Cardiovascular Events, Cancer Incidence and All-Cause Mortality in Type 2 Diabetes Patients: Pooled Results From Two Cohort Studies.
260 _ _ |a Alexandria, Va.
|c 2019
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636555163_20828
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxidative stress plays an important role in the pathophysiology of type 2 diabetes mellitus (T2DM). However, associations of biomarkers of oxidative stress with diabetes complications have not yet been addressed in large cohort studies.Derivatives of reactive oxygen metabolites (d-ROMs) levels, a proxy for the reactive oxygen species burden, and total thiol levels (TTLs), a proxy for the reductive capacity, were measured in 2,125 patients with T2DM from two German cohort studies of almost equal size at baseline and 3-4 years later. Multivariable adjusted Cox proportional hazards models with time-dependent modeled d-ROMs levels and TTLs were used to assess the associations with incident major cardiovascular events (MCE), cancer incidence, and all-cause mortality.In total, 205, 179, and 394 MCE, cancer, and all-cause mortality cases were observed during 6-7 years of follow-up, respectively. Both oxidative stress biomarkers and the d-ROMs-to-TTL ratio were statistically significantly associated with all-cause mortality in both cohorts, and the pooled hazard ratios (HRs) and 95% CIs for top versus bottom tertiles were 2.10 (95% CI 1.43, 3.09) for d-ROMs levels, 0.59 (0.40, 0.87) for TTLs, and 2.50 (1.86, 3.36) for d-ROMs-to-TTL ratio. The d-ROMs-to-TTL ratio was also statistically significantly associated with incident MCE for top versus bottom tertile (1.65 [1.07, 2.54]), but this association did not persist after additional adjustment for chronic diseases. No associations with cancer were detected.The observed strong associations of both biomarkers with mortality suggest an important contribution of an imbalanced redox system to the premature mortality of patients with diabetes.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Gào, Xin
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 1
|u dkfz
700 1 _ |a Anusruti, Ankita
|0 P:(DE-He78)c78a3ddbabb2155657210120936e9801
|b 2
|u dkfz
700 1 _ |a Holleczek, Bernd
|b 3
700 1 _ |a Jansen, Eugène H J M
|b 4
700 1 _ |a Muhlack, Dana Clarissa
|0 P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57
|b 5
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.2337/dc19-0292
|g p. dc190292 -
|0 PERI:(DE-600)1490520-6
|n 8
|p 1436-1445
|t Diabetes care
|v 42
|y 2019
|x 1935-5548
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143919
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c78a3ddbabb2155657210120936e9801
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIABETES CARE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b DIABETES CARE : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21