000143934 001__ 143934
000143934 005__ 20240229112613.0
000143934 0247_ $$2doi$$a10.3390/bioengineering6020050
000143934 0247_ $$2pmid$$apmid:31159244
000143934 0247_ $$2altmetric$$aaltmetric:61449329
000143934 037__ $$aDKFZ-2019-01491
000143934 041__ $$aeng
000143934 082__ $$a570
000143934 1001_ $$aNies, Cordula$$b0
000143934 245__ $$aA Microcavity Array-Based 4D Cell Culture Platform.
000143934 260__ $$aBasel$$bMDPI$$c2019
000143934 3367_ $$2DRIVER$$aarticle
000143934 3367_ $$2DataCite$$aOutput Types/Journal article
000143934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560411269_7028
000143934 3367_ $$2BibTeX$$aARTICLE
000143934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143934 3367_ $$00$$2EndNote$$aJournal Article
000143934 520__ $$a(1) Background: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. (2) Methods: The system was set up with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34+ cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days. We used a software-based cell detection method to count single hematopoietic stem cells (HSCs) in microcavities. (3) Results: It was possible to detect single HSCs and their migration behavior within single microcavities. The HSCs displayed a pronounced migration behavior with one population of CD34-expressing cells located at the bottom of the microcavities and one population located in the middle of the microcavities at day 14. However, at day 21 the two populations seemed to unite again so that no clear distinction between the two was possible anymore. (4) Conclusions: Single cell migration detection was possible but microscopy and flow cytometry delivered non-uniform data sets. Further optimization is currently being developed.
000143934 536__ $$0G:(DE-HGF)POF3-319H$$a319H - Addenda (POF3-319H)$$cPOF3-319H$$fPOF III$$x0
000143934 588__ $$aDataset connected to CrossRef, PubMed,
000143934 7001_ $$0P:(DE-He78)c6630b8b192d9388bbf45e5166946b76$$aRubner, Tobias$$b1$$udkfz
000143934 7001_ $$aLorig, Hanna$$b2
000143934 7001_ $$aColditz, Vera$$b3
000143934 7001_ $$aSeelmann, Helen$$b4
000143934 7001_ $$aMüller, Andreas$$b5
000143934 7001_ $$aGottwald, Eric$$b6
000143934 773__ $$0PERI:(DE-600)2746191-9$$a10.3390/bioengineering6020050$$gVol. 6, no. 2, p. 50 -$$n2$$p50 $$tBioengineering$$v6$$x2306-5354$$y2019
000143934 909CO $$ooai:inrepo02.dkfz.de:143934$$pVDB
000143934 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6630b8b192d9388bbf45e5166946b76$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000143934 9131_ $$0G:(DE-HGF)POF3-319H$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vAddenda$$x0
000143934 9141_ $$y2019
000143934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143934 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000143934 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000143934 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000143934 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000143934 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000143934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143934 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143934 9201_ $$0I:(DE-He78)W220-20160331$$kW220$$lZytometrie$$x0
000143934 980__ $$ajournal
000143934 980__ $$aVDB
000143934 980__ $$aI:(DE-He78)W220-20160331
000143934 980__ $$aUNRESTRICTED