000144001 001__ 144001
000144001 005__ 20240229112613.0
000144001 0247_ $$2doi$$a10.1016/j.stem.2019.05.013
000144001 0247_ $$2pmid$$apmid:31204176
000144001 0247_ $$2ISSN$$a1875-9777
000144001 0247_ $$2ISSN$$a1934-5909
000144001 0247_ $$2altmetric$$aaltmetric:62031570
000144001 037__ $$aDKFZ-2019-01552
000144001 041__ $$aeng
000144001 082__ $$a570
000144001 1001_ $$aHuang, Miller$$b0
000144001 245__ $$aEngineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis.
000144001 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000144001 3367_ $$2DRIVER$$aarticle
000144001 3367_ $$2DataCite$$aOutput Types/Journal article
000144001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569402422_659
000144001 3367_ $$2BibTeX$$aARTICLE
000144001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144001 3367_ $$00$$2EndNote$$aJournal Article
000144001 520__ $$aHuman neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.
000144001 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000144001 588__ $$aDataset connected to CrossRef, PubMed,
000144001 7001_ $$aTailor, Jignesh$$b1
000144001 7001_ $$aZhen, Qiqi$$b2
000144001 7001_ $$aGillmor, Aaron H$$b3
000144001 7001_ $$aMiller, Matthew L$$b4
000144001 7001_ $$aWeishaupt, Holger$$b5
000144001 7001_ $$aChen, Justin$$b6
000144001 7001_ $$aZheng, Tina$$b7
000144001 7001_ $$aNash, Emily K$$b8
000144001 7001_ $$aMcHenry, Lauren K$$b9
000144001 7001_ $$aAn, Zhenyi$$b10
000144001 7001_ $$aYe, Fubaiyang$$b11
000144001 7001_ $$aTakashima, Yasuhiro$$b12
000144001 7001_ $$aClarke, James$$b13
000144001 7001_ $$aAyetey, Harold$$b14
000144001 7001_ $$aCavalli, Florence M G$$b15
000144001 7001_ $$aLuu, Betty$$b16
000144001 7001_ $$aMoriarity, Branden S$$b17
000144001 7001_ $$aIlkhanizadeh, Shirin$$b18
000144001 7001_ $$0P:(DE-He78)082dd3179733e3e716a58eb90f418a78$$aChavez, Lukas$$b19$$udkfz
000144001 7001_ $$aYu, Chunying$$b20
000144001 7001_ $$aKurian, Kathreena M$$b21
000144001 7001_ $$aMagnaldo, Thierry$$b22
000144001 7001_ $$aSevenet, Nicolas$$b23
000144001 7001_ $$0P:(DE-HGF)0$$aKoch, Philipp$$b24
000144001 7001_ $$aPollard, Steven M$$b25
000144001 7001_ $$aDirks, Peter$$b26
000144001 7001_ $$aSnyder, Michael P$$b27
000144001 7001_ $$aLargaespada, David A$$b28
000144001 7001_ $$aCho, Yoon Jae$$b29
000144001 7001_ $$aPhillips, Joanna J$$b30
000144001 7001_ $$aSwartling, Fredrik J$$b31
000144001 7001_ $$aMorrissy, A Sorana$$b32
000144001 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b33$$udkfz
000144001 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b34$$udkfz
000144001 7001_ $$aTaylor, Michael D$$b35
000144001 7001_ $$aSmith, Austin$$b36
000144001 7001_ $$aWeiss, William A$$b37
000144001 773__ $$0PERI:(DE-600)2375356-0$$a10.1016/j.stem.2019.05.013$$gp. S1934590919302176$$n3$$p433-446.e7$$tCell stem cell$$v25$$x1934-5909$$y2019
000144001 909CO $$ooai:inrepo02.dkfz.de:144001$$pVDB
000144001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)082dd3179733e3e716a58eb90f418a78$$aDeutsches Krebsforschungszentrum$$b19$$kDKFZ
000144001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b24$$kDKFZ
000144001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b33$$kDKFZ
000144001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b34$$kDKFZ
000144001 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000144001 9141_ $$y2019
000144001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144001 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL STEM CELL : 2017
000144001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144001 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144001 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000144001 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000144001 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bCELL STEM CELL : 2017
000144001 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000144001 980__ $$ajournal
000144001 980__ $$aVDB
000144001 980__ $$aI:(DE-He78)B062-20160331
000144001 980__ $$aUNRESTRICTED