000144050 001__ 144050
000144050 005__ 20240229133148.0
000144050 0247_ $$2doi$$a10.1093/eurheartj/ehz387
000144050 0247_ $$2pmid$$apmid:31209498
000144050 0247_ $$2ISSN$$a0195-668X
000144050 0247_ $$2ISSN$$a1522-9645
000144050 0247_ $$2altmetric$$aaltmetric:62340416
000144050 037__ $$aDKFZ-2019-01601
000144050 041__ $$aeng
000144050 082__ $$a610
000144050 1001_ $$aHilvo, Mika$$b0
000144050 245__ $$aDevelopment and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients.
000144050 260__ $$aOxford$$bOxford University Press$$c2020
000144050 3367_ $$2DRIVER$$aarticle
000144050 3367_ $$2DataCite$$aOutput Types/Journal article
000144050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636705364_5417
000144050 3367_ $$2BibTeX$$aARTICLE
000144050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144050 3367_ $$00$$2EndNote$$aJournal Article
000144050 500__ $$a2020 Jan 14;41(3):371-380
000144050 520__ $$aDistinct ceramide lipids have been shown to predict the risk for cardiovascular disease (CVD) events, especially cardiovascular death. As phospholipids have also been linked with CVD risk, we investigated whether the combination of ceramides with phosphatidylcholines (PCs) would be synergistic in the prediction of CVD events in patients with atherosclerotic coronary heart disease in three independent cohort studies.Ceramides and PCs were analysed using liquid chromatography-mass spectrometry (LC-MS) in three studies: WECAC (The Western Norway Coronary Angiography Cohort) (N = 3789), LIPID (Long-Term Intervention with Pravastatin in Ischaemic Disease) trial (N = 5991), and KAROLA (Langzeiterfolge der KARdiOLogischen Anschlussheilbehandlung) (N = 1023). A simple risk score, based on the ceramides and PCs showing the best prognostic features, was developed in the WECAC study and validated in the two other cohorts. This score was highly significant in predicting CVD mortality [multiadjusted hazard ratios (HRs; 95% confidence interval) per standard deviation were 1.44 (1.28-1.63) in WECAC, 1.47 (1.34-1.61) in the LIPID trial, and 1.69 (1.31-2.17) in KAROLA]. In addition, a combination of the risk score with high-sensitivity troponin T increased the HRs to 1.63 (1.44-1.85) and 2.04 (1.57-2.64) in WECAC and KAROLA cohorts, respectively. The C-statistics in WECAC for the risk score combined with sex and age was 0.76 for CVD death. The ceramide-phospholipid risk score showed comparable and synergistic predictive performance with previously published CVD risk models for secondary prevention.A simple ceramide- and phospholipid-based risk score can efficiently predict residual CVD event risk in patients with coronary artery disease.
000144050 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000144050 588__ $$aDataset connected to CrossRef, PubMed,
000144050 7001_ $$aMeikle, Peter J$$b1
000144050 7001_ $$aPedersen, Eva Ringdal$$b2
000144050 7001_ $$aTell, Grethe S$$b3
000144050 7001_ $$aDhar, Indu$$b4
000144050 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b5$$udkfz
000144050 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b6$$udkfz
000144050 7001_ $$aLääperi, Mitja$$b7
000144050 7001_ $$aKauhanen, Dimple$$b8
000144050 7001_ $$aKoistinen, Kaisa M$$b9
000144050 7001_ $$aJylhä, Antti$$b10
000144050 7001_ $$aHuynh, Kevin$$b11
000144050 7001_ $$aMellett, Natalie A$$b12
000144050 7001_ $$aTonkin, Andrew M$$b13
000144050 7001_ $$aSullivan, David R$$b14
000144050 7001_ $$aSimes, John$$b15
000144050 7001_ $$aNestel, Paul$$b16
000144050 7001_ $$aKoenig, Wolfgang$$b17
000144050 7001_ $$aRothenbacher, Dietrich$$b18
000144050 7001_ $$aNygård, Ottar$$b19
000144050 7001_ $$aLaaksonen, Reijo$$b20
000144050 773__ $$0PERI:(DE-600)2001908-7$$a10.1093/eurheartj/ehz387$$gp. ehz387$$n3$$p371-380$$tEuropean heart journal$$v41$$x1522-9645$$y2020
000144050 909CO $$ooai:inrepo02.dkfz.de:144050$$pVDB
000144050 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000144050 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000144050 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000144050 9141_ $$y2020
000144050 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000144050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144050 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144050 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144050 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000144050 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR HEART J : 2017
000144050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144050 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144050 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144050 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000144050 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000144050 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bEUR HEART J : 2017
000144050 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000144050 980__ $$ajournal
000144050 980__ $$aVDB
000144050 980__ $$aI:(DE-He78)C070-20160331
000144050 980__ $$aUNRESTRICTED