001     144058
005     20240229112616.0
024 7 _ |a 10.1210/jc.2019-00461
|2 doi
024 7 _ |a pmid:31225875
|2 pmid
024 7 _ |a 0021-972X
|2 ISSN
024 7 _ |a 0368-1610
|2 ISSN
024 7 _ |a 1945-7197
|2 ISSN
024 7 _ |a 2578-7241
|2 ISSN
024 7 _ |a altmetric:62562340
|2 altmetric
037 _ _ |a DKFZ-2019-01609
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Haffa, Mariam
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Transcriptome profiling of adipose tissue reveals depot-specific metabolic alterations among colorectal cancer patients.
260 _ _ |a Oxford
|c 2019
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681375664_19513
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adipose tissue inflammation and dysregulated energy homeostasis are key mechanisms linking obesity and cancer. Distinct adipose tissue depots strongly differ in their metabolic profiles, however comprehensive studies of depot-specific perturbations among cancer patients are lacking.We compared transcriptome profiles of visceral (VAT) and subcutaneous (SAT) adipose tissue from colorectal cancer patients, and assessed the associations of different anthropometric measures with depot-specific gene expression.Whole transcriptomes of VAT and SAT were measured in 233 patients from the ColoCare Study and visceral and subcutaneous fat area were quantified via computed tomography.VAT compared to SAT showed elevated gene expression of cytokines, cell adhesion molecules and key regulators of metabolic homeostasis. Increased fat area was associated with downregulated lipid and small molecule metabolism and upregulated inflammatory pathways in both compartments. Comparing these patterns between depots proved specific and more pronounced gene expression alterations in SAT and identified unique associations of integrins and lipid metabolism-related enzymes. VAT gene expression patterns that were associated with visceral fat area poorly overlapped with patterns associated with self-reported body mass index (BMI). However, subcutaneous fat area and BMI showed similar associations with SAT gene expression.This large-scale human study demonstrates pronounced disparities between distinct adipose tissue depots and reveals that BMI poorly correlates with fat mass-associated changes in VAT. Together, these results provide crucial evidence for the necessity to differentiate between distinct adipose tissue depots for a correct characterization of gene expression profiles that may affect metabolic health of colorectal cancer patients.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Lin, Tengda
|b 1
700 1 _ |a Holowatyj, Andreana N
|b 2
700 1 _ |a Kratz, Mario
|b 3
700 1 _ |a Toth, Reka
|0 P:(DE-He78)cd2ec3f2ae9b2178f113e0f2ed15fc48
|b 4
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 5
700 1 _ |a Gigic, Biljana
|0 P:(DE-He78)bf23868ef13533194e6881f2c5445e81
|b 6
700 1 _ |a Habermann, Nina
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 8
700 1 _ |a Böhm, Jürgen
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 10
700 1 _ |a Schneider, Martin
|b 11
700 1 _ |a Ulrich, Alexis
|b 12
700 1 _ |a Herpel, Esther
|b 13
700 1 _ |a Schirmacher, Peter
|b 14
700 1 _ |a Straub, Beate K
|b 15
700 1 _ |a Nattenmüller, Johanna
|b 16
700 1 _ |a Kauczor, Hans-Ulrich
|b 17
700 1 _ |a Ball, Claudia R
|0 P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce
|b 18
700 1 _ |a Ulrich, Cornelia M
|0 P:(DE-HGF)0
|b 19
|e Last author
700 1 _ |a Glimm, Hanno
|0 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
|b 20
|e Last author
700 1 _ |a Scherer, Dominique
|0 P:(DE-He78)0e36ebe046be3cabb1c2e282725180b9
|b 21
|e Last author
773 _ _ |a 10.1210/jc.2019-00461
|g p. jc.2019-00461
|0 PERI:(DE-600)2026217-6
|p 5225-5237
|t The journal of clinical endocrinology & metabolism
|v 104
|y 2019
|x 1945-7197
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144058
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)cd2ec3f2ae9b2178f113e0f2ed15fc48
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)bf23868ef13533194e6881f2c5445e81
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)0e36ebe046be3cabb1c2e282725180b9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLIN ENDOCR METAB : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CLIN ENDOCR METAB : 2017
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)L301-20160331
|k L301
|l DKTK Dresden
|x 3
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 4
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L301-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21