000144134 001__ 144134
000144134 005__ 20240229112618.0
000144134 0247_ $$2doi$$a10.1002/bjs.11294
000144134 0247_ $$2pmid$$apmid:31259390
000144134 0247_ $$2ISSN$$a0007-1323
000144134 0247_ $$2ISSN$$a1365-2168
000144134 0247_ $$2altmetric$$aaltmetric:62953376
000144134 037__ $$aDKFZ-2019-01683
000144134 041__ $$aeng
000144134 082__ $$a610
000144134 1001_ $$00000-0003-0185-2312$$aBroza, Y. Y.$$b0
000144134 245__ $$aScreening for gastric cancer using exhaled breath samples.
000144134 260__ $$aNew York, NY [u.a.]$$bWiley$$c2019
000144134 3367_ $$2DRIVER$$aarticle
000144134 3367_ $$2DataCite$$aOutput Types/Journal article
000144134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573738464_25202$$xReview Article
000144134 3367_ $$2BibTeX$$aARTICLE
000144134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144134 3367_ $$00$$2EndNote$$aJournal Article
000144134 520__ $$aThe aim was to derive a breath-based classifier for gastric cancer using a nanomaterial-based sensor array, and to validate it in a large screening population.A new training algorithm for the diagnosis of gastric cancer was derived from previous breath samples from patients with gastric cancer and healthy controls in a clinical setting, and validated in a blinded manner in a screening population.The training algorithm was derived using breath samples from 99 patients with gastric cancer and 342 healthy controls, and validated in a population of 726 people. The calculated training set algorithm had 82 per cent sensitivity, 78 per cent specificity and 79 per cent accuracy. The algorithm correctly classified all three patients with gastric cancer and 570 of the 723 cancer-free controls in the screening population, yielding 100 per cent sensitivity, 79 per cent specificity and 79 per cent accuracy. Further analyses of lifestyle and confounding factors were not associated with the classifier.This first validation of a nanomaterial sensor array-based algorithm for gastric cancer detection from breath samples in a large screening population supports the potential of this technology for the early detection of gastric cancer.
000144134 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000144134 588__ $$aDataset connected to CrossRef, PubMed,
000144134 7001_ $$aKhatib, S.$$b1
000144134 7001_ $$aGharra, A.$$b2
000144134 7001_ $$0P:(DE-He78)78a9df7108a5b079145be1cb1ab6a315$$aKrilaviciute, A.$$b3$$udkfz
000144134 7001_ $$aAmal, H.$$b4
000144134 7001_ $$aPolaka, I.$$b5
000144134 7001_ $$aParshutin, S.$$b6
000144134 7001_ $$aKikuste, I.$$b7
000144134 7001_ $$aGasenko, E.$$b8
000144134 7001_ $$aSkapars, R.$$b9
000144134 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, H.$$b10$$udkfz
000144134 7001_ $$aLeja, M.$$b11
000144134 7001_ $$aHaick, H.$$b12
000144134 773__ $$0PERI:(DE-600)2006309-X$$a10.1002/bjs.11294$$n9$$p1122-1125$$tThe British journal of surgery$$v106$$x0007-1323$$y2019
000144134 909CO $$ooai:inrepo02.dkfz.de:144134$$pVDB
000144134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)78a9df7108a5b079145be1cb1ab6a315$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000144134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000144134 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000144134 9141_ $$y2019
000144134 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000144134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRIT J SURG : 2017
000144134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144134 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144134 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000144134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000144134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144134 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144134 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144134 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000144134 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000144134 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRIT J SURG : 2017
000144134 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000144134 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000144134 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000144134 980__ $$ajournal
000144134 980__ $$aVDB
000144134 980__ $$aI:(DE-He78)C070-20160331
000144134 980__ $$aI:(DE-He78)C120-20160331
000144134 980__ $$aI:(DE-He78)L101-20160331
000144134 980__ $$aUNRESTRICTED