001     144148
005     20240229112618.0
024 7 _ |a 10.1093/ije/dyz124
|2 doi
024 7 _ |a pmid:31243447
|2 pmid
024 7 _ |a 0300-5771
|2 ISSN
024 7 _ |a 1464-3685
|2 ISSN
024 7 _ |a altmetric:62807029
|2 altmetric
037 _ _ |a DKFZ-2019-01697
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Ooi, Brandon Nick Sern
|b 0
245 _ _ |a The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis.
260 _ _ |a Oxford
|c 2019
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573738354_28187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evidence linking breast size to breast cancer risk has been inconsistent, and its interpretation is often hampered by confounding factors such as body mass index (BMI). Here, we used linkage disequilibrium score regression and two-sample Mendelian randomization (MR) to examine the genetic associations between BMI, breast size and breast cancer risk.Summary-level genotype data from 23andMe, Inc (breast size, n = 33 790), the Breast Cancer Association Consortium (breast cancer risk, n = 228 951) and the Genetic Investigation of ANthropometric Traits (BMI, n = 183 507) were used for our analyses. In assessing causal relationships, four complementary MR techniques [inverse variance weighted (IVW), weighted median, weighted mode and MR-Egger regression] were used to test the robustness of the results.The genetic correlation (rg) estimated between BMI and breast size was high (rg = 0.50, P = 3.89x10-43). All MR methods provided consistent evidence that higher genetically predicted BMI was associated with larger breast size [odds ratio (ORIVW): 2.06 (1.80-2.35), P = 1.38x10-26] and lower overall breast cancer risk [ORIVW: 0.81 (0.74-0.89), P = 9.44x10-6]. No evidence of a relationship between genetically predicted breast size and breast cancer risk was found except when using the weighted median and weighted mode methods, and only with oestrogen receptor (ER)-negative risk. There was no evidence of reverse causality in any of the analyses conducted (P > 0.050).Our findings indicate a potential positive causal association between BMI and breast size and a potential negative causal association between BMI and breast cancer risk. We found no clear evidence for a direct relationship between breast size and breast cancer risk.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Loh, Huiwen
|b 1
700 1 _ |a Ho, Peh Joo
|b 2
700 1 _ |a Milne, Roger L
|b 3
700 1 _ |a Giles, Graham
|b 4
700 1 _ |a Gao, Chi
|b 5
700 1 _ |a Kraft, Peter
|b 6
700 1 _ |a John, Esther M
|b 7
700 1 _ |a Swerdlow, Anthony
|b 8
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 9
|u dkfz
700 1 _ |a Wu, Anna H
|b 10
700 1 _ |a Haiman, Christopher
|b 11
700 1 _ |a Evans, D Gareth
|b 12
700 1 _ |a Zheng, Wei
|b 13
700 1 _ |a Fasching, Peter A
|b 14
700 1 _ |a Castelao, Jose Esteban
|b 15
700 1 _ |a Kwong, Ava
|b 16
700 1 _ |a Shen, Xia
|b 17
700 1 _ |a Czene, Kamila
|b 18
700 1 _ |a Hall, Per
|b 19
700 1 _ |a Dunning, Alison
|b 20
700 1 _ |a Easton, Douglas
|b 21
700 1 _ |a Hartman, Mikael
|b 22
700 1 _ |a Li, Jingmei
|b 23
773 _ _ |a 10.1093/ije/dyz124
|g p. dyz124
|0 PERI:(DE-600)1494592-7
|n 3
|p 781-794
|t International journal of epidemiology
|v 48
|y 2019
|x 1464-3685
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144148
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J EPIDEMIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J EPIDEMIOL : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21