001     144259
005     20240229123018.0
024 7 _ |a 10.1002/bimj.201800395
|2 doi
024 7 _ |a pmid:31265159
|2 pmid
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
024 7 _ |a altmetric:63057753
|2 altmetric
037 _ _ |a DKFZ-2019-01779
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 0
|e First author
|u dkfz
245 _ _ |a Power gains by using external information in clinical trials are typically not possible when requiring strict type I error control.
260 _ _ |a Berlin
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601381356_28271
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;62(2):361-374#EA:C060#LA:C060#
520 _ _ |a In the era of precision medicine, novel designs are developed to deal with flexible clinical trials that incorporate many treatment strategies for multiple diseases in one trial setting. This situation often leads to small sample sizes in disease-treatment combinations and has fostered the discussion about the benefits of borrowing of external or historical information for decision-making in these trials. Several methods have been proposed that dynamically discount the amount of information borrowed from historical data based on the conformity between historical and current data. Specifically, Bayesian methods have been recommended and numerous investigations have been performed to characterize the properties of the various borrowing mechanisms with respect to the gain to be expected in the trials. However, there is common understanding that the risk of type I error inflation exists when information is borrowed and many simulation studies are carried out to quantify this effect. To add transparency to the debate, we show that if prior information is conditioned upon and a uniformly most powerful test exists, strict control of type I error implies that no power gain is possible under any mechanism of incorporation of prior information, including dynamic borrowing. The basis of the argument is to consider the test decision function as a function of the current data even when external information is included. We exemplify this finding in the case of a pediatric arm appended to an adult trial and dichotomous outcome for various methods of dynamic borrowing from adult information to the pediatric arm. In conclusion, if use of relevant external data is desired, the requirement of strict type I error control has to be replaced by more appropriateĀ metrics.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Calderazzo, Silvia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1002/bimj.201800395
|g p. bimj.201800395
|0 PERI:(DE-600)1479920-0
|n 2
|p 361-374
|t Biometrical journal
|v 62
|y 2020
|x 1521-4036
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144259
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21