001     144260
005     20240229112620.0
024 7 _ |a 10.3390/cancers11070912
|2 doi
024 7 _ |a pmid:31261771
|2 pmid
037 _ _ |a DKFZ-2019-01780
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Raut, Janhavi R
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Whole-blood DNA Methylation Markers for Risk Stratification in Colorectal Cancer Screening: A Systematic Review.
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562749525_1740
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA methylation profiles within whole-blood samples have been reported to be associated with colorectal cancer (CRC) occurrence and might enable risk stratification for CRC. We systematically reviewed and summarized studies addressing the association of whole-blood DNA methylation markers and risk of developing CRC or its precursors. We searched PubMed and ISI Web of Knowledge to identify relevant studies published until 12th November 2018. Two reviewers independently extracted data on study population characteristics, candidate genes, methylation measurement methods, methylation levels of patients in comparison to healthy controls, p-values, and odds ratios of the markers. Overall, 19 studies reporting 102 methylation markers for risk assessment of colorectal neoplasms met our inclusion criteria. The studies mostly used Methylation Specific Polymerase Chain Reaction (MS-PCR) for assessing the methylation status of a defined set of genes. Only two studies applied array-based genome-wide assays to assess the methylation levels. Five studies incorporated panels consisting of 2-10 individual methylation markers to assess their potential for stratifying the risk of developing colorectal neoplasms. However, none of these associations was confirmed in an independent cohort. In conclusion, whole-blood DNA methylation markers may be useful as biomarkers for risk stratification in CRC screening, but reproducible risk prediction algorithms are yet to be established by large scale epigenome-wide studies with thorough validation of results in prospective study cohorts including large screening populations. The possibilities of enhancing predictive power by combining methylation data with polygenetic risk scores and environmental risk factors need to be explored.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Guan, Zhong
|0 P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56
|b 1
|u dkfz
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 2
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.3390/cancers11070912
|g Vol. 11, no. 7, p. 912 -
|0 PERI:(DE-600)2527080-1
|n 7
|p 912
|t Cancers
|v 11
|y 2019
|x 2072-6694
909 C O |o oai:inrepo02.dkfz.de:144260
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21