000144413 001__ 144413
000144413 005__ 20240229112623.0
000144413 0247_ $$2doi$$a10.1007/s00204-019-02520-8
000144413 0247_ $$2pmid$$apmid:31324950
000144413 0247_ $$2ISSN$$a0003-9446
000144413 0247_ $$2ISSN$$a0340-5761
000144413 0247_ $$2ISSN$$a0370-8497
000144413 0247_ $$2ISSN$$a1432-0738
000144413 037__ $$aDKFZ-2019-01866
000144413 041__ $$aeng
000144413 082__ $$a610
000144413 1001_ $$0P:(DE-He78)b5d9469407737829d5348adb615655c6$$aCalderazzo, Silvia$$b0$$eFirst author$$udkfz
000144413 245__ $$aModel-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity.
000144413 260__ $$aHeidelberg$$bSpringer$$c2019
000144413 3367_ $$2DRIVER$$aarticle
000144413 3367_ $$2DataCite$$aOutput Types/Journal article
000144413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597733327_9274
000144413 3367_ $$2BibTeX$$aARTICLE
000144413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144413 3367_ $$00$$2EndNote$$aJournal Article
000144413 520__ $$aA paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Academies entitled 'Toxicity testing in the 21st Century: a vision and strategy'. This new vision encourages the use of in vitro and in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different genes to various drugs (amiodarone: 0.312-2.5 [Formula: see text]; cyclosporine A: 0.25-2 [Formula: see text]; chlorpromazine: 0.625-10 [Formula: see text]; diazepam: 1-8 [Formula: see text]; carbamazepine: 6.25-50 [Formula: see text]) is studied in 3D aggregate brain cell cultures. Genes' responsiveness is quantified and ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level at which the response is significantly different from a control, the model-based approach allows a principled estimation of the LOEC and of its uncertainty. The Box-Cox transform both sides approach is adopted to deal with heteroscedastic and/or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Different inferential procedures to estimate the Box-Cox coefficient, and to obtain confidence intervals for the log-logistic curve parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates for in vitro biomarkers of toxicity.
000144413 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000144413 588__ $$aDataset connected to CrossRef, PubMed,
000144413 7001_ $$aTavel, Denise$$b1
000144413 7001_ $$aZurich, Marie-Gabrielle$$b2
000144413 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$eLast author
000144413 773__ $$0PERI:(DE-600)1458459-1$$a10.1007/s00204-019-02520-8$$n9$$p2635-2644$$tArchives of toxicology$$v93$$x1432-0738$$y2019
000144413 909CO $$ooai:inrepo02.dkfz.de:144413$$pVDB
000144413 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b5d9469407737829d5348adb615655c6$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000144413 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000144413 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000144413 9141_ $$y2019
000144413 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000144413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144413 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bARCH TOXICOL : 2017
000144413 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000144413 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000144413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144413 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144413 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144413 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000144413 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000144413 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bARCH TOXICOL : 2017
000144413 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000144413 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000144413 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000144413 980__ $$ajournal
000144413 980__ $$aVDB
000144413 980__ $$aI:(DE-He78)C060-20160331
000144413 980__ $$aUNRESTRICTED