001     144413
005     20240229112623.0
024 7 _ |a 10.1007/s00204-019-02520-8
|2 doi
024 7 _ |a pmid:31324950
|2 pmid
024 7 _ |a 0003-9446
|2 ISSN
024 7 _ |a 0340-5761
|2 ISSN
024 7 _ |a 0370-8497
|2 ISSN
024 7 _ |a 1432-0738
|2 ISSN
037 _ _ |a DKFZ-2019-01866
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Calderazzo, Silvia
|0 P:(DE-He78)b5d9469407737829d5348adb615655c6
|b 0
|e First author
|u dkfz
245 _ _ |a Model-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity.
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597733327_9274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Academies entitled 'Toxicity testing in the 21st Century: a vision and strategy'. This new vision encourages the use of in vitro and in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different genes to various drugs (amiodarone: 0.312-2.5 [Formula: see text]; cyclosporine A: 0.25-2 [Formula: see text]; chlorpromazine: 0.625-10 [Formula: see text]; diazepam: 1-8 [Formula: see text]; carbamazepine: 6.25-50 [Formula: see text]) is studied in 3D aggregate brain cell cultures. Genes' responsiveness is quantified and ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level at which the response is significantly different from a control, the model-based approach allows a principled estimation of the LOEC and of its uncertainty. The Box-Cox transform both sides approach is adopted to deal with heteroscedastic and/or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Different inferential procedures to estimate the Box-Cox coefficient, and to obtain confidence intervals for the log-logistic curve parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates for in vitro biomarkers of toxicity.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Tavel, Denise
|b 1
700 1 _ |a Zurich, Marie-Gabrielle
|b 2
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 3
|e Last author
773 _ _ |a 10.1007/s00204-019-02520-8
|0 PERI:(DE-600)1458459-1
|n 9
|p 2635-2644
|t Archives of toxicology
|v 93
|y 2019
|x 1432-0738
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144413
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b5d9469407737829d5348adb615655c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ARCH TOXICOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ARCH TOXICOL : 2017
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21