001     144451
005     20240229112625.0
024 7 _ |a 10.1186/s13148-019-0703-4
|2 doi
024 7 _ |a pmid:31340858
|2 pmid
024 7 _ |a pmc:PMC6657180
|2 pmc
024 7 _ |a 1868-7075
|2 ISSN
024 7 _ |a 1868-7083
|2 ISSN
024 7 _ |a altmetric:65001925
|2 altmetric
037 _ _ |a DKFZ-2019-01903
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jia, Min
|0 P:(DE-He78)72d22b0cfac00f2fc21ceb7236804af0
|b 0
|e First author
|u dkfz
245 _ _ |a A prognostic CpG score derived from epigenome-wide profiling of tumor tissue was independently associated with colorectal cancer survival.
260 _ _ |a [S.l.]
|c 2019
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568788220_3704
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Results of previous studies on the association of the CpG island methylator phenotype (CIMP) with colorectal cancer (CRC) prognosis were inconsistent and mostly based on different CIMP definitions. The current study aimed to comprehensively investigate the associations between DNA methylation on genes previously used to define CIMP status with CRC survival.Patients with CRC followed up for a median of 5.2 years were divided into a study cohort (n = 568) and a validation cohort (n = 308). DNA methylation was measured in tumor tissue using the Illumina Infinium HumanMethylation450 BeadChip and restricted to 43 genes used to define CIMP status in previous studies. Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) of survival after CRC, including adjustment for tumor stage, microsatellite instability, and BRAF mutation status. In the study cohort, ten CpG sites were identified to be associated with CRC survival. Seven of these ten CpG sites were also associated with CRC survival in the validation cohort and were used to construct a prognostic score. CRC patients with a prognostic score of the lowest methylation level showed poorer disease-specific survival compared with patients with the highest methylation level in both the study cohort and the validation cohort (HR = 3.11 and 95% CI = 1.97-4.91, and HR = 3.06 and 95% CI = 1.71-5.45, respectively).A CpG panel consisting of seven CpG sites was found to be strongly associated with CRC survival, independent from important clinical factors and mutations associated with CIMP. Further studies are required to confirm these findings.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)6a8f87626cb610618a60d742677284cd
|b 1
|u dkfz
700 1 _ |a Jansen, Lina
|0 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
|b 2
|u dkfz
700 1 _ |a Walter, Viola
|0 P:(DE-He78)6c2a1ea8cce3580fe2d1c1df120a92b9
|b 3
|u dkfz
700 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 4
|u dkfz
700 1 _ |a Gündert, Melanie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tagscherer, Katrin E
|b 6
700 1 _ |a Roth, Wilfried
|b 7
700 1 _ |a Bewerunge-Hudler, Melanie
|0 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71
|b 8
|u dkfz
700 1 _ |a Herpel, Esther
|b 9
700 1 _ |a Kloor, Matthias
|b 10
700 1 _ |a Ulrich, Alexis
|b 11
700 1 _ |a Burwinkel, Barbara
|0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
|b 12
|u dkfz
700 1 _ |a Bläker, Hendrik
|b 13
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 14
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 15
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 16
|e Last author
|u dkfz
773 _ _ |a 10.1186/s13148-019-0703-4
|g Vol. 11, no. 1, p. 109
|0 PERI:(DE-600)2553921-8
|n 1
|p 109
|t Clinical epigenetics
|v 11
|y 2019
|x 1868-7083
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144451
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)72d22b0cfac00f2fc21ceb7236804af0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6a8f87626cb610618a60d742677284cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6c2a1ea8cce3580fe2d1c1df120a92b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN EPIGENETICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN EPIGENETICS : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)W110-20160331
|k W110
|l Microarray Unit
|x 2
920 1 _ |0 I:(DE-He78)C080-20160331
|k C080
|l Molekulare Epidemiologie
|x 3
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 4
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 5
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)W110-20160331
980 _ _ |a I:(DE-He78)C080-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21