000144470 001__ 144470
000144470 005__ 20240229112626.0
000144470 020__ $$a978-1-4939-9150-1 (print)
000144470 020__ $$a978-1-4939-9151-8 (electronic)
000144470 0247_ $$2doi$$a10.1007/978-1-4939-9151-8_15
000144470 0247_ $$2pmid$$apmid:30779042
000144470 0247_ $$2ISSN$$a1064-3745
000144470 0247_ $$2ISSN$$a1940-6029
000144470 0247_ $$2altmetric$$aaltmetric:56072597
000144470 037__ $$aDKFZ-2019-01921
000144470 041__ $$aeng
000144470 082__ $$a570
000144470 1001_ $$0P:(DE-HGF)0$$aHübschmann, Daniel$$b0$$eFirst author
000144470 245__ $$aEvaluation of Whole Genome Sequencing Data.
000144470 260__ $$a[Heidelberg]$$b[Springer]$$c2019
000144470 3367_ $$2DRIVER$$aarticle
000144470 3367_ $$2DataCite$$aOutput Types/Journal article
000144470 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000144470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565335613_21515
000144470 3367_ $$2BibTeX$$aARTICLE
000144470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144470 3367_ $$00$$2EndNote$$aJournal Article
000144470 520__ $$aWhole genome sequencing (WGS) can provide comprehensive insights into the genetic makeup of lymphomas. Here we describe a selection of methods for the analysis of WGS data, including alignment, identification of different classes of genomic variants, the identification of driver mutations, and the identification of mutational signatures. We further outline design considerations for WGS studies and provide a variety of quality control measures to detect common quality problems in the data.
000144470 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000144470 588__ $$aDataset connected to CrossRef Book Series, PubMed,
000144470 7001_ $$0P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aSchlesner, Matthias$$b1$$eLast author$$udkfz
000144470 773__ $$0PERI:(DE-600)2493551-7$$a10.1007/978-1-4939-9151-8_15$$p321-336$$tMethods in molecular biology$$v1956$$x1064-3745$$y2019
000144470 909CO $$ooai:inrepo02.dkfz.de:144470$$pVDB
000144470 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000144470 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000144470 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000144470 9141_ $$y2019
000144470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144470 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144470 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x0
000144470 9201_ $$0I:(DE-He78)V960-20160331$$kV960$$lHI-Stem$$x1
000144470 9201_ $$0I:(DE-He78)A010-20160331$$kA010$$lStammzellen und Krebs$$x2
000144470 9201_ $$0I:(DE-He78)B240-20160331$$kB240$$lBioinformatik und Omics Data Analytics$$x3
000144470 980__ $$ajournal
000144470 980__ $$aVDB
000144470 980__ $$abook
000144470 980__ $$aI:(DE-He78)B080-20160331
000144470 980__ $$aI:(DE-He78)V960-20160331
000144470 980__ $$aI:(DE-He78)A010-20160331
000144470 980__ $$aI:(DE-He78)B240-20160331
000144470 980__ $$aUNRESTRICTED