000144470 001__ 144470 000144470 005__ 20240229112626.0 000144470 020__ $$a978-1-4939-9150-1 (print) 000144470 020__ $$a978-1-4939-9151-8 (electronic) 000144470 0247_ $$2doi$$a10.1007/978-1-4939-9151-8_15 000144470 0247_ $$2pmid$$apmid:30779042 000144470 0247_ $$2ISSN$$a1064-3745 000144470 0247_ $$2ISSN$$a1940-6029 000144470 0247_ $$2altmetric$$aaltmetric:56072597 000144470 037__ $$aDKFZ-2019-01921 000144470 041__ $$aeng 000144470 082__ $$a570 000144470 1001_ $$0P:(DE-HGF)0$$aHübschmann, Daniel$$b0$$eFirst author 000144470 245__ $$aEvaluation of Whole Genome Sequencing Data. 000144470 260__ $$a[Heidelberg]$$b[Springer]$$c2019 000144470 3367_ $$2DRIVER$$aarticle 000144470 3367_ $$2DataCite$$aOutput Types/Journal article 000144470 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000144470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565335613_21515 000144470 3367_ $$2BibTeX$$aARTICLE 000144470 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000144470 3367_ $$00$$2EndNote$$aJournal Article 000144470 520__ $$aWhole genome sequencing (WGS) can provide comprehensive insights into the genetic makeup of lymphomas. Here we describe a selection of methods for the analysis of WGS data, including alignment, identification of different classes of genomic variants, the identification of driver mutations, and the identification of mutational signatures. We further outline design considerations for WGS studies and provide a variety of quality control measures to detect common quality problems in the data. 000144470 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000144470 588__ $$aDataset connected to CrossRef Book Series, PubMed, 000144470 7001_ $$0P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aSchlesner, Matthias$$b1$$eLast author$$udkfz 000144470 773__ $$0PERI:(DE-600)2493551-7$$a10.1007/978-1-4939-9151-8_15$$p321-336$$tMethods in molecular biology$$v1956$$x1064-3745$$y2019 000144470 909CO $$ooai:inrepo02.dkfz.de:144470$$pVDB 000144470 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000144470 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000144470 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000144470 9141_ $$y2019 000144470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000144470 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000144470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000144470 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x0 000144470 9201_ $$0I:(DE-He78)V960-20160331$$kV960$$lHI-Stem$$x1 000144470 9201_ $$0I:(DE-He78)A010-20160331$$kA010$$lStammzellen und Krebs$$x2 000144470 9201_ $$0I:(DE-He78)B240-20160331$$kB240$$lBioinformatik und Omics Data Analytics$$x3 000144470 980__ $$ajournal 000144470 980__ $$aVDB 000144470 980__ $$abook 000144470 980__ $$aI:(DE-He78)B080-20160331 000144470 980__ $$aI:(DE-He78)V960-20160331 000144470 980__ $$aI:(DE-He78)A010-20160331 000144470 980__ $$aI:(DE-He78)B240-20160331 000144470 980__ $$aUNRESTRICTED