001     144532
005     20240229121830.0
024 7 _ |a 10.1161/CIRCRESAHA.119.314817
|2 doi
024 7 _ |a pmid:31284834
|2 pmid
024 7 _ |a 0009-7330
|2 ISSN
024 7 _ |a 1524-4571
|2 ISSN
024 7 _ |a altmetric:63386689
|2 altmetric
037 _ _ |a DKFZ-2019-01978
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Doroudgar, Shirin
|b 0
245 _ _ |a Monitoring Cell-Type-Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress.
260 _ _ |a New York, NY
|c 2019
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582279382_27317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance
520 _ _ |a Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells.This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload.By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation.This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.
536 _ _ |a 321 - Basic Concepts (POF3-321)
|0 G:(DE-HGF)POF3-321
|c POF3-321
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Hofmann, Christoph
|b 1
700 1 _ |a Boileau, Etienne
|b 2
700 1 _ |a Malone, Brandon
|b 3
700 1 _ |a Riechert, Eva
|b 4
700 1 _ |a Gorska, Agnieszka A
|b 5
700 1 _ |a Jakobi, Tobias
|b 6
700 1 _ |a Sandmann, Clara
|b 7
700 1 _ |a Jürgensen, Lonny
|b 8
700 1 _ |a Kmietczyk, Vivien
|b 9
700 1 _ |a Malovrh, Ellen
|b 10
700 1 _ |a Burghaus, Jana
|b 11
700 1 _ |a Rettel, Mandy
|b 12
700 1 _ |a Stein, Frank
|b 13
700 1 _ |a Younesi, Fereshteh
|b 14
700 1 _ |a Friedrich, Ulrike A
|0 P:(DE-He78)2c65d8f4b893b8b540695694b123cbc0
|b 15
|u dkfz
700 1 _ |a Mauz, Victoria
|b 16
700 1 _ |a Backs, Johannes
|b 17
700 1 _ |a Kramer, Günter
|0 P:(DE-He78)8b9aa336210db1592efa7400628e5a46
|b 18
|u dkfz
700 1 _ |a Katus, Hugo A
|b 19
700 1 _ |a Dieterich, Christoph
|b 20
700 1 _ |a Völkers, Mirko
|b 21
773 _ _ |a 10.1161/CIRCRESAHA.119.314817
|g Vol. 125, no. 4, p. 431 - 448
|0 PERI:(DE-600)1467838-x
|n 4
|p 431 - 448
|t Circulation research
|v 125
|y 2019
|x 1524-4571
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144532
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)2c65d8f4b893b8b540695694b123cbc0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)8b9aa336210db1592efa7400628e5a46
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-321
|2 G:(DE-HGF)POF3-300
|v Basic Concepts
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CIRC RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CIRC RES : 2017
920 1 _ |0 I:(DE-He78)A250-20160331
|k A250
|l Chaperones and Proteases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A250-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21