001     144571
005     20240229123019.0
024 7 _ |a 10.1080/10428194.2019.1646905
|2 doi
024 7 _ |a pmid:31423866
|2 pmid
024 7 _ |a 1026-8022
|2 ISSN
024 7 _ |a 1029-2403
|2 ISSN
024 7 _ |a 1042-8194
|2 ISSN
024 7 _ |a altmetric:65200081
|2 altmetric
037 _ _ |a DKFZ-2019-02014
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Blocka, Joanna
|b 0
245 _ _ |a Salvage therapy versus upfront autologous stem cell transplantation in multiple myeloma patients with progressive disease after first-line induction therapy.
260 _ _ |a London [u.a.]
|c 2020
|b Taylor & Francis Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578475481_25709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jan;61(1):27-36
520 _ _ |a It is a matter of debate whether myeloma patients with progressive disease (PD) after induction should receive salvage therapy or proceed directly to autologous stem cell transplantation. We performed a retrospective analysis of 1599 patients treated between 1991 and 2016 at the University Hospital of Heidelberg and other centers. Deepening of response through salvage therapy did not lead to better progression-free or overall survival (PD versus salvage therapy patients: HR = 0.71, 95% CI [0.28, 1.80], p = 0.5 and HR = 0.77, 95% CI [0.30, 1.95], p = 0.6, respectively), neither in patients treated with novel agents (HR = 0.66, 95% CI [0.23, 1.85], p = 0.4 and HR = 0.76, 95% CI [0.27, 2.15], p = 0.6) nor older regimens (HR = 0.86, 95% CI [0.36, 2.07], p = 0.7 and HR = 0.8, 95% CI [0.34, 1.91], p = 0.6). Therefore, primary nonresponders might benefit from a direct transplant rather than salvage induction, although the analyzed salvage therapy cohort was small (n = 23) and cytogenetics was not included in the multivariable analysis.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 1
|u dkfz
700 1 _ |a Mueller-Tidow, Carsten
|b 2
700 1 _ |a Goldschmidt, Hartmut
|b 3
700 1 _ |a Hillengass, Jens
|b 4
773 _ _ |a 10.1080/10428194.2019.1646905
|g p. 1 - 10
|0 PERI:(DE-600)2030637-4
|n 1
|p 27-36
|t Leukemia and lymphoma
|v 61
|y 2020
|x 1029-2403
909 C O |p VDB
|o oai:inrepo02.dkfz.de:144571
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LEUKEMIA LYMPHOMA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21