001     144615
005     20240229112631.0
024 7 _ |a 10.1371/journal.pone.0221350
|2 doi
024 7 _ |a pmid:31450235
|2 pmid
024 7 _ |a altmetric:65736345
|2 altmetric
037 _ _ |a DKFZ-2019-02057
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Radtke, Jan Philipp
|0 P:(DE-He78)79897f8897ff77676549d9895258a0f2
|b 0
|e First author
|u dkfz
245 _ _ |a Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS.
260 _ _ |a San Francisco, California, US
|c 2019
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1566905845_19224
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Risk models (RM) need external validation to assess their value beyond the setting in which they were developed. We validated a RM combining mpMRI and clinical parameters for the probability of harboring significant prostate cancer (sPC, Gleason Score ≥ 3+4) for biopsy-naïve men.The original RM was based on data of 670 biopsy-naïve men from Heidelberg University Hospital who underwent mpMRI with PI-RADS scoring prior to MRI/TRUS-fusion biopsy 2012-2015. Validity was tested by a consecutive cohort of biopsy-naïve men from Heidelberg (n = 160) and externally by a cohort of 133 men from University College London Hospital (UCLH). Assessment of validity was performed at fusion-biopsy by calibration plots, receiver operating characteristics curve and decision curve analyses. The RM`s performance was compared to ERSPC-RC3, ERSPC-RC3+PI-RADSv1.0 and PI-RADSv1.0 alone.SPC was detected in 76 men (48%) at Heidelberg and 38 men (29%) at UCLH. The areas under the curve (AUC) were 0.86 for the RM in both cohorts. For ERSPC-RC3+PI-RADSv1.0 the AUC was 0.84 in Heidelberg and 0.82 at UCLH, for ERSPC-RC3 0.76 at Heidelberg and 0.77 at UCLH and for PI-RADSv1.0 0.79 in Heidelberg and 0.82 at UCLH. Calibration curves suggest that prevalence of sPC needs to be adjusted to local circumstances, as the RM overestimated the risk of harboring sPC in the UCLH cohort. After prevalence-adjustment with respect to the prevalence underlying ERSPC-RC3 to ensure a generalizable comparison, not only between the Heidelberg and die UCLH subgroup, the RM`s Net benefit was superior over the ERSPC`s and the mpMRI`s for threshold probabilities above 0.1 in both cohorts.The RM discriminated well between men with and without sPC at initial MRI-targeted biopsy but overestimated the sPC-risk at UCLH. Taking prevalence into account, the model demonstrated benefit compared with clinical risk calculators and PI-RADSv1.0 in making the decision to biopsy men at suspicion of PC. However, prevalence differences must be taken into account when using or validating the presented risk model.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Giganti, Francesco
|b 1
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 2
|u dkfz
700 1 _ |a Stabile, Armando
|b 3
700 1 _ |a Marenco, Jose
|b 4
700 1 _ |a Orczyk, Clement
|b 5
700 1 _ |a Kasivisvanathan, Veeru
|b 6
700 1 _ |a Nyarangi-Dix, Joanne Nyaboe
|b 7
700 1 _ |a Schütz, Viktoria
|b 8
700 1 _ |a Dieffenbacher, Svenja
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Görtz, Magdalena
|b 10
700 1 _ |a Stenzinger, Albrecht
|b 11
700 1 _ |a Roth, Wilfried
|b 12
700 1 _ |a Freeman, Alex
|b 13
700 1 _ |a Punwani, Shonit
|b 14
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 15
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 16
|u dkfz
700 1 _ |a Hohenfellner, Markus
|b 17
700 1 _ |a Emberton, Mark
|b 18
700 1 _ |a Moore, Caroline M
|b 19
773 _ _ |a 10.1371/journal.pone.0221350
|g Vol. 14, no. 8, p. e0221350 -
|0 PERI:(DE-600)2267670-3
|n 8
|p e0221350 -
|t PLOS ONE
|v 14
|y 2019
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:144615
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)79897f8897ff77676549d9895258a0f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21