000144699 001__ 144699
000144699 005__ 20240229112634.0
000144699 0247_ $$2doi$$a10.14309/ajg.0000000000000370
000144699 0247_ $$2pmid$$apmid:31464746
000144699 0247_ $$2ISSN$$a0002-9270
000144699 0247_ $$2ISSN$$a1948-9498
000144699 0247_ $$2ISSN$$a1948-9501
000144699 0247_ $$2altmetric$$aaltmetric:65855966
000144699 037__ $$aDKFZ-2019-02141
000144699 041__ $$aeng
000144699 082__ $$a610
000144699 1001_ $$0P:(DE-He78)415ba72b9b033eb7eeb48292f498cced$$aPeng, Le$$b0$$eFirst author$$udkfz
000144699 245__ $$aHead-to-Head Comparison of the Performance of 17 Risk Models for Predicting Presence of Advanced Neoplasms in Colorectal Cancer Screening.
000144699 260__ $$aLondon [u.a.]$$bNature$$c2019
000144699 3367_ $$2DRIVER$$aarticle
000144699 3367_ $$2DataCite$$aOutput Types/Journal article
000144699 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568805775_5737
000144699 3367_ $$2BibTeX$$aARTICLE
000144699 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144699 3367_ $$00$$2EndNote$$aJournal Article
000144699 520__ $$aMany risk scores have been proposed to predict presence of advanced colorectal neoplasms, but a comprehensive comparison conducted in the same population is sparse. The aim of this study was to evaluate and directly compare the diagnostic performance of published risk prediction models for advanced colorectal neoplasms.Data were drawn from 2 cohorts of subjects undergoing screening colonoscopy in Germany, i.e., KolosSal (n = 16,195) and BliTz (n = 7,444). Absolute risks and relative risks were generated for the presence of at least 1 advanced neoplasm, taking the lowest risk group as the reference group. Performance of risk models was assessed by the area under the receiver operating characteristic curve (AUC) and compared by the net reclassification improvement.The 2 cohorts included 1,917 (11.8%) and 848 (11.4%) participants with advanced neoplasm, respectively. Absolute risks were mostly between 5% and 10% among participants in the lowest risk group and between 15% and 20% among participants in the highest risk group, and relative risks mostly ranged from 2.0 to 4.0 across the risk models in both cohorts. The AUCs ranged from 0.58 to 0.65 in KolosSal and from 0.57 to 0.61 in BliTz for all risk scores. Compared to models with lower AUC, classification was significantly improved in most models with higher AUC.Risk models for advanced colorectal neoplasms generally yielded modest discriminatory power, despite some variation in performance between models. Future studies should evaluate the performance of these risk models in racially diverse populations and investigate possible extensions, such as combination with polygenic risk scores.
000144699 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000144699 588__ $$aDataset connected to CrossRef, PubMed,
000144699 7001_ $$0P:(DE-HGF)0$$aBalavarca, Yesilda$$b1
000144699 7001_ $$0P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aWeigl, Korbinian$$b2$$udkfz
000144699 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b3$$udkfz
000144699 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$eLast author$$udkfz
000144699 773__ $$0PERI:(DE-600)2003227-4$$a10.14309/ajg.0000000000000370$$gp. 1 -$$n9$$p1520-1530$$tThe American journal of gastroenterology$$v114$$x0002-9270$$y2019
000144699 909CO $$ooai:inrepo02.dkfz.de:144699$$pVDB
000144699 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)415ba72b9b033eb7eeb48292f498cced$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000144699 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000144699 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000144699 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000144699 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000144699 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000144699 9141_ $$y2019
000144699 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J GASTROENTEROL : 2017
000144699 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144699 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144699 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144699 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000144699 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000144699 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144699 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144699 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144699 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144699 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000144699 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000144699 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAM J GASTROENTEROL : 2017
000144699 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000144699 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000144699 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000144699 980__ $$ajournal
000144699 980__ $$aVDB
000144699 980__ $$aI:(DE-He78)C070-20160331
000144699 980__ $$aI:(DE-He78)C120-20160331
000144699 980__ $$aI:(DE-He78)L101-20160331
000144699 980__ $$aUNRESTRICTED