001     144699
005     20240229112634.0
024 7 _ |a 10.14309/ajg.0000000000000370
|2 doi
024 7 _ |a pmid:31464746
|2 pmid
024 7 _ |a 0002-9270
|2 ISSN
024 7 _ |a 1948-9498
|2 ISSN
024 7 _ |a 1948-9501
|2 ISSN
024 7 _ |a altmetric:65855966
|2 altmetric
037 _ _ |a DKFZ-2019-02141
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Peng, Le
|0 P:(DE-He78)415ba72b9b033eb7eeb48292f498cced
|b 0
|e First author
|u dkfz
245 _ _ |a Head-to-Head Comparison of the Performance of 17 Risk Models for Predicting Presence of Advanced Neoplasms in Colorectal Cancer Screening.
260 _ _ |a London [u.a.]
|c 2019
|b Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568805775_5737
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many risk scores have been proposed to predict presence of advanced colorectal neoplasms, but a comprehensive comparison conducted in the same population is sparse. The aim of this study was to evaluate and directly compare the diagnostic performance of published risk prediction models for advanced colorectal neoplasms.Data were drawn from 2 cohorts of subjects undergoing screening colonoscopy in Germany, i.e., KolosSal (n = 16,195) and BliTz (n = 7,444). Absolute risks and relative risks were generated for the presence of at least 1 advanced neoplasm, taking the lowest risk group as the reference group. Performance of risk models was assessed by the area under the receiver operating characteristic curve (AUC) and compared by the net reclassification improvement.The 2 cohorts included 1,917 (11.8%) and 848 (11.4%) participants with advanced neoplasm, respectively. Absolute risks were mostly between 5% and 10% among participants in the lowest risk group and between 15% and 20% among participants in the highest risk group, and relative risks mostly ranged from 2.0 to 4.0 across the risk models in both cohorts. The AUCs ranged from 0.58 to 0.65 in KolosSal and from 0.57 to 0.61 in BliTz for all risk scores. Compared to models with lower AUC, classification was significantly improved in most models with higher AUC.Risk models for advanced colorectal neoplasms generally yielded modest discriminatory power, despite some variation in performance between models. Future studies should evaluate the performance of these risk models in racially diverse populations and investigate possible extensions, such as combination with polygenic risk scores.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Balavarca, Yesilda
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weigl, Korbinian
|0 P:(DE-He78)f4e98340e600f7411886c21c7b778d36
|b 2
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 3
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.14309/ajg.0000000000000370
|g p. 1 -
|0 PERI:(DE-600)2003227-4
|n 9
|p 1520-1530
|t The American journal of gastroenterology
|v 114
|y 2019
|x 0002-9270
909 C O |o oai:inrepo02.dkfz.de:144699
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)415ba72b9b033eb7eeb48292f498cced
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)f4e98340e600f7411886c21c7b778d36
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J GASTROENTEROL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AM J GASTROENTEROL : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21