000144820 001__ 144820
000144820 005__ 20240229112638.0
000144820 0247_ $$2doi$$a10.1055/s-0039-1693685
000144820 0247_ $$2pmid$$apmid:31514209
000144820 0247_ $$2ISSN$$a0026-1270
000144820 0247_ $$2ISSN$$a2511-705X
000144820 037__ $$aDKFZ-2019-02245
000144820 041__ $$aeng
000144820 1001_ $$0P:(DE-HGF)0$$aJuárez, D.$$b0$$eFirst author
000144820 245__ $$aA Generic Method and Implementation to Evaluate and Improve Data Quality in Distributed Research Networks.
000144820 260__ $$aStuttgart$$bThieme52258$$c2019
000144820 3367_ $$2DRIVER$$aarticle
000144820 3367_ $$2DataCite$$aOutput Types/Journal article
000144820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568969665_29557
000144820 3367_ $$2BibTeX$$aARTICLE
000144820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144820 3367_ $$00$$2EndNote$$aJournal Article
000144820 520__ $$aWith the increasing personalization of clinical therapies, translational research is evermore dependent on multisite research cooperations to obtain sufficient data and biomaterial. Distributed research networks rely on the availability of high-quality data stored in local databases operated by their member institutions. However, reusing data documented by independent health providers for the purpose of care, rather than research ('secondary use'), reveal a high variability in terms of data formats, as well as poor data quality, across network sites. The aim of this work is the provision of a process for the assessment of data quality with regard to completeness and syntactic accuracy across independently operated data warehouses using common definitions stored in a central (network-wide) metadata repository (MDR). For assessment of data quality across multiple sites, we employ a framework of so-called bridgeheads. These are federated data warehouses, which allow the sites to participate in a research network. A central MDR is used to store the definitions of the commonly agreed data elements and their permissible values. We present the design for a generator of quality reports within a bridgehead, allowing the validation of data in the local data warehouse against a research network's central MDR. A standardized quality report can be produced at each network site, providing a means to compare data quality across sites, as well as to channel feedback to the local data source systems, and local documentation personnel. A reference implementation for this concept has been successfully utilized at 10 sites across the German Cancer Consortium. We have shown that comparable data quality assessment across different partners of a distributed research network is feasible when a central metadata repository is combined with locally installed assessment processes. To achieve this, we designed a quality report and the process for generating such a report. The final step was the implementation in a German research network.
000144820 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000144820 588__ $$aDataset connected to CrossRef, PubMed,
000144820 7001_ $$0P:(DE-He78)bfb4d32df646d0410acaf59acd92872e$$aSchmidt, E. E.$$b1$$udkfz
000144820 7001_ $$0P:(DE-HGF)0$$aStahl-Toyota, S.$$b2
000144820 7001_ $$0P:(DE-He78)28406352f67b7b6d43b303a4e955147a$$aÜckert, F.$$b3$$udkfz
000144820 7001_ $$0P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aLablans, Martin$$b4$$eLast author$$udkfz
000144820 773__ $$0PERI:(DE-600)2030773-1$$a10.1055/s-0039-1693685$$gVol. 58, no. 2-03, p. 086 - 093$$n2-03$$p086 - 093$$tMethods of information in medicine$$v58$$x2511-705X$$y2019
000144820 909CO $$ooai:inrepo02.dkfz.de:144820$$pVDB
000144820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000144820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bfb4d32df646d0410acaf59acd92872e$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000144820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000144820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)28406352f67b7b6d43b303a4e955147a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000144820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000144820 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000144820 9141_ $$y2019
000144820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHOD INFORM MED : 2017
000144820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144820 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144820 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000144820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000144820 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0
000144820 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000144820 9201_ $$0I:(DE-He78)E240-20160331$$kE240$$lMedizinische Informatik in der Translationalen Onkologie$$x2
000144820 980__ $$ajournal
000144820 980__ $$aVDB
000144820 980__ $$aI:(DE-He78)E260-20160331
000144820 980__ $$aI:(DE-He78)L101-20160331
000144820 980__ $$aI:(DE-He78)E240-20160331
000144820 980__ $$aUNRESTRICTED