000144870 001__ 144870
000144870 005__ 20240229112641.0
000144870 0247_ $$2doi$$a10.1172/JCI122767
000144870 0247_ $$2pmid$$apmid:31454332
000144870 0247_ $$2ISSN$$a0021-9738
000144870 0247_ $$2ISSN$$a1558-8238
000144870 0247_ $$2altmetric$$aaltmetric:65613647
000144870 037__ $$aDKFZ-2019-02294
000144870 041__ $$aeng
000144870 082__ $$a610
000144870 1001_ $$aTisch, Nathalie$$b0
000144870 245__ $$aCaspase-8 modulates physiological and pathological angiogenesis during retina development.
000144870 260__ $$aAnn Arbor, Mich.$$bASCJ$$c2019
000144870 3367_ $$2DRIVER$$aarticle
000144870 3367_ $$2DataCite$$aOutput Types/Journal article
000144870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577973773_14125
000144870 3367_ $$2BibTeX$$aARTICLE
000144870 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000144870 3367_ $$00$$2EndNote$$aJournal Article
000144870 500__ $$a 2019 Dec 2;129(12):5092-5107
000144870 520__ $$aDuring developmental angiogenesis blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether and how cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates both cell death via apoptosis and necroptosis. Here we show that expression of Casp-8 in endothelial cells (ECs) was required for proper postnatal retina angiogenesis. EC specific Casp-8 knockout pups (Casp-8ECko) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting and migration independent of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 mitogen-activated protein kinase (MAPK) downstream of receptor-interacting serine/threonine- protein kinase 3 (RIPK3) and destabilization of VE-cadherin at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR), resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECko pups. Taken together, we describe that Casp-8 acts in a cell-death independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.
000144870 536__ $$0G:(DE-HGF)POF3-319H$$a319H - Addenda (POF3-319H)$$cPOF3-319H$$fPOF III$$x0
000144870 588__ $$aDataset connected to CrossRef, PubMed,
000144870 7001_ $$aFreire-Valls, Aida$$b1
000144870 7001_ $$aYerbes, Rosario$$b2
000144870 7001_ $$aParedes, Isidora$$b3
000144870 7001_ $$0P:(DE-He78)b8f19c256fc9d795781f1e0c6e7c5c6d$$aLa Porta, Silvia$$b4$$udkfz
000144870 7001_ $$aWang, Xiaohong$$b5
000144870 7001_ $$aMartín-Pérez, Rosa$$b6
000144870 7001_ $$aCastro, Laura$$b7
000144870 7001_ $$aWong, Wendy Wei-Lynn$$b8
000144870 7001_ $$aCoultas, Leigh$$b9
000144870 7001_ $$aStrilic, Boris$$b10
000144870 7001_ $$0P:(DE-He78)00a2ea610aee4a8fca32908fc3d02e91$$aGröne, Hermann-Josef$$b11$$udkfz
000144870 7001_ $$0P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aHielscher, Thomas$$b12$$udkfz
000144870 7001_ $$aMogler, Carolin$$b13
000144870 7001_ $$aAdams, Ralf$$b14
000144870 7001_ $$aHeiduschka, Peter$$b15
000144870 7001_ $$aClaesson-Welsh, Lena$$b16
000144870 7001_ $$aMazzone, Massimiliano$$b17
000144870 7001_ $$aLópez-Rivas, Abelardo$$b18
000144870 7001_ $$aSchmidt, Thomas$$b19
000144870 7001_ $$0P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aAugustin, Hellmut G$$b20$$udkfz
000144870 7001_ $$aRuiz de Almodovar, Carmen$$b21
000144870 773__ $$0PERI:(DE-600)2018375-6$$a10.1172/JCI122767$$n12$$p5092-5107$$tThe journal of clinical investigation$$v129$$x1558-8238$$y2019
000144870 909CO $$ooai:inrepo02.dkfz.de:144870$$pVDB
000144870 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b8f19c256fc9d795781f1e0c6e7c5c6d$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000144870 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)00a2ea610aee4a8fca32908fc3d02e91$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000144870 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000144870 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aDeutsches Krebsforschungszentrum$$b20$$kDKFZ
000144870 9131_ $$0G:(DE-HGF)POF3-319H$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vAddenda$$x0
000144870 9141_ $$y2019
000144870 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CLIN INVEST : 2017
000144870 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000144870 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000144870 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000144870 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000144870 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000144870 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000144870 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000144870 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000144870 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000144870 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000144870 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000144870 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000144870 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ CLIN INVEST : 2017
000144870 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000144870 9201_ $$0I:(DE-He78)G130-20160331$$kG130$$lZelluläre und Molekulare Pathologie$$x1
000144870 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x2
000144870 980__ $$ajournal
000144870 980__ $$aVDB
000144870 980__ $$aI:(DE-He78)A190-20160331
000144870 980__ $$aI:(DE-He78)G130-20160331
000144870 980__ $$aI:(DE-He78)C060-20160331
000144870 980__ $$aUNRESTRICTED