000147183 001__ 147183
000147183 005__ 20240229112642.0
000147183 0247_ $$2doi$$a10.3390/cancers11101426
000147183 0247_ $$2pmid$$apmid:31557860
000147183 0247_ $$2altmetric$$aaltmetric:67432332
000147183 037__ $$aDKFZ-2019-02319
000147183 041__ $$aeng
000147183 082__ $$a610
000147183 1001_ $$0P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada$$aBhardwaj, Megha$$b0$$eFirst author$$udkfz
000147183 245__ $$aEvaluation and Validation of Plasma Proteins Using Two Different Protein Detection Methods for Early Detection of Colorectal Cancer.
000147183 260__ $$aBasel$$bMDPI$$c2019
000147183 3367_ $$2DRIVER$$aarticle
000147183 3367_ $$2DataCite$$aOutput Types/Journal article
000147183 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577104380_24059
000147183 3367_ $$2BibTeX$$aARTICLE
000147183 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000147183 3367_ $$00$$2EndNote$$aJournal Article
000147183 520__ $$aPlasma protein biomarkers could be an efficient alternative for population-based screening for early detection of colorectal cancer (CRC). The objective of this study was to evaluate and validate plasma proteins individually and as a signature for early detection of CRC.In a three-stage design, proteins were measured firstly by liquid chromatography/multiple reaction monitoring-mass spectrometry (LC/MRM-MS) and later by proximity extension assay (PEA) in a discovery set consisting of 96 newly diagnosed CRC cases and 94 controls free of neoplasms at screening colonoscopy. Two algorithms (one for each measurement method) were derived by Lasso regression and .632+ bootstrap based on 11 proteins that were included in both the LC/MRM-MS and PEA measurements. Additionally, another algorithm was constructed from the same eleven biomarkers plus amphireglin, the most promising protein marker in the PEA measurements that had not been available from the LC/MRM-MS measurements. Lastly the three prediction signatures were validated with PEA in independent samples of participants of screening colonoscopy (CRC (n = 56), advanced adenoma (n = 101), and participants free of neoplasm (n = 102)).The same four proteins were included in all three prediction signatures; mannan binding lectin serine protease 1, osteopontin, serum paraoxonase lactonase 3 and transferrin receptor protein 1, and the third prediction signature additionally included amphiregulin. In the independent validation set from a true screening setting, the five-marker blood-based signature including AREG presented areas under the curves of 0.82 (95% CI, 0.74-0.89), 0.86 (95% CI, 0.77-0.92) and 0.76 (95% CI, 0.64-0.86) for all, early and late stages CRC, respectively.Two different measurement methods consistently identified four protein markers and an algorithm additionally including amphiregulin, a marker measured by PEA only, showed promising performance for detecting early stage CRC in an independent validation in a true screening setting. These proteins may be potential candidates for blood-based tests for early detection of CRC.
000147183 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000147183 588__ $$aDataset connected to CrossRef, PubMed,
000147183 7001_ $$0P:(DE-He78)6d4d6a0e2d726f899086ca98cd560922$$aGies, Anton$$b1$$udkfz
000147183 7001_ $$0P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aWeigl, Korbinian$$b2$$udkfz
000147183 7001_ $$0P:(DE-He78)eabbefb821cdb73961a5adf967330b62$$aTikk, Kaja$$b3
000147183 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b4$$udkfz
000147183 7001_ $$0P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aSchrotz-King, Petra$$b5$$udkfz
000147183 7001_ $$aBorchers, Christoph H$$b6
000147183 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b7$$eLast author$$udkfz
000147183 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers11101426$$gVol. 11, no. 10, p. 1426 -$$n10$$p1426$$tCancers$$v11$$x2072-6694$$y2019
000147183 909CO $$ooai:inrepo02.dkfz.de:147183$$pVDB
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6d4d6a0e2d726f899086ca98cd560922$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000147183 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000147183 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000147183 9141_ $$y2019
000147183 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2017
000147183 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000147183 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000147183 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000147183 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000147183 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000147183 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000147183 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000147183 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000147183 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000147183 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000147183 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000147183 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000147183 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000147183 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000147183 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2017
000147183 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000147183 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x1
000147183 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x2
000147183 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x3
000147183 980__ $$ajournal
000147183 980__ $$aVDB
000147183 980__ $$aI:(DE-He78)C120-20160331
000147183 980__ $$aI:(DE-He78)C070-20160331
000147183 980__ $$aI:(DE-He78)C060-20160331
000147183 980__ $$aI:(DE-He78)L101-20160331
000147183 980__ $$aUNRESTRICTED