001     147203
005     20240229121830.0
024 7 _ |a 10.1016/S2214-109X(19)30318-3
|2 doi
024 7 _ |a pmid:31488387
|2 pmid
024 7 _ |a 2214-109X
|2 ISSN
024 7 _ |a 2572-116X
|2 ISSN
024 7 _ |a altmetric:65794752
|2 altmetric
037 _ _ |a DKFZ-2019-02329
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Group, WHO CVD Risk Chart Working
|b 0
|e Collaboration Author
245 _ _ |a World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions.
260 _ _ |a Oxford
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582281102_27362
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions.In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance.Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt.We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide.World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kaptoge, Stephen
|b 1
700 1 _ |a Pennells, Lisa
|b 2
700 1 _ |a De Bacquer, Dirk
|b 3
700 1 _ |a Cooney, Marie Therese
|b 4
700 1 _ |a Kavousi, Maryam
|b 5
700 1 _ |a Stevens, Gretchen
|b 6
700 1 _ |a Riley, Leanne Margaret
|b 7
700 1 _ |a Savin, Stefan
|b 8
700 1 _ |a Khan, Taskeen
|b 9
700 1 _ |a Altay, Servet
|b 10
700 1 _ |a Amouyel, Philippe
|b 11
700 1 _ |a Assmann, Gerd
|b 12
700 1 _ |a Bell, Steven
|b 13
700 1 _ |a Ben-Shlomo, Yoav
|b 14
700 1 _ |a Berkman, Lisa
|b 15
700 1 _ |a Beulens, Joline W
|b 16
700 1 _ |a Björkelund, Cecilia
|b 17
700 1 _ |a Blaha, Michael
|b 18
700 1 _ |a Blazer, Dan G
|b 19
700 1 _ |a Bolton, Thomas
|b 20
700 1 _ |a Bonita Beaglehole, Ruth
|b 21
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 22
|u dkfz
700 1 _ |a Brunner, Eric J
|b 23
700 1 _ |a Casiglia, Edoardo
|b 24
700 1 _ |a Chamnan, Parinya
|b 25
700 1 _ |a Choi, Yeun-Hyang
|b 26
700 1 _ |a Chowdry, Rajiv
|b 27
700 1 _ |a Coady, Sean
|b 28
700 1 _ |a Crespo, Carlos J
|b 29
700 1 _ |a Cushman, Mary
|b 30
700 1 _ |a Dagenais, Gilles R
|b 31
700 1 _ |a D'Agostino, Ralph B
|b 32
700 1 _ |a Daimon, Makoto
|b 33
700 1 _ |a Davidson, Karina W
|b 34
700 1 _ |a Engström, Gunnar
|b 35
700 1 _ |a Ford, Ian
|b 36
700 1 _ |a Gallacher, John
|b 37
700 1 _ |a Gansevoort, Ron T
|b 38
700 1 _ |a Gaziano, Thomas Andrew
|b 39
700 1 _ |a Giampaoli, Simona
|b 40
700 1 _ |a Grandits, Greg
|b 41
700 1 _ |a Grimsgaard, Sameline
|b 42
700 1 _ |a Grobbee, Diederick E
|b 43
700 1 _ |a Gudnason, Vilmundur
|b 44
700 1 _ |a Guo, Qi
|b 45
700 1 _ |a Tolonen, Hanna
|b 46
700 1 _ |a Humphries, Steve
|b 47
700 1 _ |a Iso, Hiroyasu
|b 48
700 1 _ |a Jukema, J Wouter
|b 49
700 1 _ |a Kauhanen, Jussi
|b 50
700 1 _ |a Kengne, Andre Pascal
|b 51
700 1 _ |a Khalili, Davood
|b 52
700 1 _ |a Koenig, Wolfgang
|b 53
700 1 _ |a Kromhout, Daan
|b 54
700 1 _ |a Krumholz, Harlan
|b 55
700 1 _ |a Lam, T. H.
|b 56
700 1 _ |a Laughlin, Gail
|b 57
700 1 _ |a Marín Ibañez, Alejandro
|b 58
700 1 _ |a Meade, Tom W
|b 59
700 1 _ |a Moons, Karel G M
|b 60
700 1 _ |a Nietert, Paul J
|b 61
700 1 _ |a Ninomiya, Toshiharu
|b 62
700 1 _ |a Nordestgaard, Børge G
|b 63
700 1 _ |a O'Donnell, Christopher
|b 64
700 1 _ |a Palmieri, Luigi
|b 65
700 1 _ |a Patel, Anushka
|b 66
700 1 _ |a Perel, Pablo
|b 67
700 1 _ |a Price, Jackie F
|b 68
700 1 _ |a Providencia, Rui
|b 69
700 1 _ |a Ridker, Paul M
|b 70
700 1 _ |a Rodriguez, Beatriz
|b 71
700 1 _ |a Rosengren, Annika
|b 72
700 1 _ |a Roussel, Ronan
|b 73
700 1 _ |a Sakurai, Masaru
|b 74
700 1 _ |a Salomaa, Veikko
|b 75
700 1 _ |a Sato, Shinichi
|b 76
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 77
|u dkfz
700 1 _ |a Shara, Nawar
|b 78
700 1 _ |a Shaw, Jonathan E
|b 79
700 1 _ |a Shin, Hee-Choon
|b 80
700 1 _ |a Simons, Leon A
|b 81
700 1 _ |a Sofianopoulou, Eleni
|b 82
700 1 _ |a Sundström, Johan
|b 83
700 1 _ |a Völzke, Henry
|b 84
700 1 _ |a Wallace, Robert B
|b 85
700 1 _ |a Wareham, Nicholas J
|b 86
700 1 _ |a Willeit, Peter
|b 87
700 1 _ |a Wood, David
|b 88
700 1 _ |a Wood, Angela
|b 89
700 1 _ |a Zhao, Dong
|b 90
700 1 _ |a Woodward, Mark
|b 91
700 1 _ |a Danaei, Goodarz
|b 92
700 1 _ |a Roth, Gregory
|b 93
700 1 _ |a Mendis, Shanthi
|b 94
700 1 _ |a Onuma, Oyere
|b 95
700 1 _ |a Varghese, Cherian
|b 96
700 1 _ |a Ezzati, Majid
|b 97
700 1 _ |a Graham, Ian
|b 98
700 1 _ |a Jackson, Rod
|b 99
700 1 _ |a Danesh, John
|b 100
700 1 _ |a Di Angelantonio, Emanuele
|b 101
773 _ _ |a 10.1016/S2214-109X(19)30318-3
|g Vol. 7, no. 10, p. e1332 - e1345
|0 PERI:(DE-600)2723488-5
|n 10
|p e1332 - e1345
|t The lancet / Global health Global health [...]
|v 7
|y 2019
|x 2214-109X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:147203
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 77
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET GLOB HEALTH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b LANCET GLOB HEALTH : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21