001     147214
005     20240229123021.0
024 7 _ |a 10.1002/bimj.201800390
|2 doi
024 7 _ |a pmid:31553076
|2 pmid
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
037 _ _ |a DKFZ-2019-02340
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 0
|e First author
245 _ _ |a Adjusting Simon's optimal two-stage design for heterogeneous populations based on stratification or using historical controls.
260 _ _ |a Berlin
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627896611_25572
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;62(2):311-329#EA:C060#LA:C060#
520 _ _ |a In many cancer studies, the population under consideration is highly heterogeneous in terms of clinical, demographical, and biological covariates. As the covariates substantially impact the individual prognosis, the response probabilities of patients entering the study may strongly vary. In this case, the operating characteristics of classical clinical trial designs heavily depend on the covariates of patients entering the study. Notably, both type I and type II errors can be much higher than specified. In this paper, two modifications of Simon's optimal two-stage design correcting for heterogeneous populations are derived. The first modification assumes that the patient population is divided into a finite number of subgroups, where each subgroup has a different response probability. The second approach uses a logistic regression model based on historical controls to estimate the response probabilities of patients entering the study. The performance of both approaches is demonstrated using simulation examples.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Habermehl, Christina
|0 0000-0002-2783-0587
|b 1
700 1 _ |a Schlenk, Richard F
|0 P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc
|b 2
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 3
|e Last author
773 _ _ |a 10.1002/bimj.201800390
|g p. bimj.201800390
|0 PERI:(DE-600)1479920-0
|n 2
|p 311-329
|t Biometrical journal
|v 62
|y 2020
|x 1521-4036
909 C O |p VDB
|o oai:inrepo02.dkfz.de:147214
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21