001 | 147318 | ||
005 | 20240229123022.0 | ||
024 | 7 | _ | |a 10.1017/S0007114519002538 |2 doi |
024 | 7 | _ | |a pmid:31583990 |2 pmid |
024 | 7 | _ | |a 0007-1145 |2 ISSN |
024 | 7 | _ | |a 1475-2662 |2 ISSN |
024 | 7 | _ | |a altmetric:70253505 |2 altmetric |
037 | _ | _ | |a DKFZ-2019-02439 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Harms, Laura M |b 0 |
245 | _ | _ | |a Plasma polyphenols associated with lower high-sensitivity C-reactive protein concentrations: a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. |
260 | _ | _ | |a Cambridge |c 2020 |b Cambridge Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1580472654_32441 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2020 Jan 28;123(2):198-208 |
520 | _ | _ | |a Experimental studies have reported on the anti-inflammatory properties of polyphenols. However, results from epidemiological investigations have been inconsistent, and especially studies using biomarkers for assessment of polyphenol intake have been scant. We aimed to characterize the association between plasma concentrations of 35 polyphenol compounds and low-grade systemic inflammation state as measured by high-sensitivity C-reactive protein (hsCRP). A cross-sectional data analysis was performed based on 315 participants in the European Prospective Investigation into Cancer and Nutrition cohort with available measurements of plasma polyphenols and hsCRP. In logistic regression analysis the odds and 95% confidence intervals (CI-s) of elevated serum hsCRP (>3 mg/L) were calculated within quartiles and per standard deviation (SD) higher level of plasma polyphenol concentrations. In multivariable-adjusted model, the sum of plasma concentrations of all polyphenols measured (per SD) was associated with 29% lower odds of elevated hsCRP (95% CI: 50%-1%). In the class of flavonoids, daidzein was inversely associated with elevated hsCRP (OR= 0.66, 95%CI 0.46-0.96). Among phenolic acids, statistically significant associations were observed for 3,5-dihydroxyphenylpropionic acid (OR=0.58, 95%CI 0.39-0.86), 3,4-dihydroxyphenylpropionic acid (OR= 0.63, 95% CI 0.46-0.87), ferulic acid (OR= 0.65, 95%CI 0.44-0.96), and caffeic acid (OR= 0.69, 95%CI 0.51-0.93). The odds of elevated hsCRP were significantly reduced for hydroxytyrosol (OR= 0.67, 95%CI 0.48-0.93). This study showed that polyphenol biomarkers are associated with lower odds of elevated hsCRP. Whether diet rich in bioactive polyphenol compounds could be an effective strategy to prevent or modulate deleterious health effects of inflammation should be addressed by further well-powered longitudinal studies. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Scalbert, Augustin |b 1 |
700 | 1 | _ | |a Zamora-Ros, Raul |0 0000-0002-6236-6804 |b 2 |
700 | 1 | _ | |a Rinaldi, Sabina |b 3 |
700 | 1 | _ | |a Jenab, Mazda |b 4 |
700 | 1 | _ | |a Murphy, Neil |b 5 |
700 | 1 | _ | |a Achaintre, David |b 6 |
700 | 1 | _ | |a Tjønneland, Anne |b 7 |
700 | 1 | _ | |a Olsen, Anja |b 8 |
700 | 1 | _ | |a Overvad, Kim |b 9 |
700 | 1 | _ | |a Mancini, Francesca Romana |b 10 |
700 | 1 | _ | |a Mahamat-Saleh, Yahya |b 11 |
700 | 1 | _ | |a Boutron-Ruault, Marie-Christine |b 12 |
700 | 1 | _ | |a Kühn, Tilman |0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |b 13 |u dkfz |
700 | 1 | _ | |a Katzke, Verena |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |b 14 |u dkfz |
700 | 1 | _ | |a Trichopoulou, Antonia |b 15 |
700 | 1 | _ | |a Martimianaki, Georgia |b 16 |
700 | 1 | _ | |a Karakatsani, Anna |b 17 |
700 | 1 | _ | |a Palli, Domenico |b 18 |
700 | 1 | _ | |a Panico, Salvatore |b 19 |
700 | 1 | _ | |a Sieri, Sabina |b 20 |
700 | 1 | _ | |a Tumino, Rosario |b 21 |
700 | 1 | _ | |a Sacerdote, Carlotta |b 22 |
700 | 1 | _ | |a Bueno-de-Mesquita, Bas |b 23 |
700 | 1 | _ | |a Vermeulen, Roel C H |b 24 |
700 | 1 | _ | |a Weiderpass, Elisabete |b 25 |
700 | 1 | _ | |a Nøst, Therese Haugdahl |b 26 |
700 | 1 | _ | |a Lasheras, Cristina |b 27 |
700 | 1 | _ | |a Rodríguez-Barranco, Miguel |b 28 |
700 | 1 | _ | |a Huerta, José María |b 29 |
700 | 1 | _ | |a Barricarte, Aurelio |b 30 |
700 | 1 | _ | |a Dorronsoro, Miren |b 31 |
700 | 1 | _ | |a Hultdin, Johan |b 32 |
700 | 1 | _ | |a Schmidt, Julie A |b 33 |
700 | 1 | _ | |a Gunter, Marc |b 34 |
700 | 1 | _ | |a Riboli, Elio |b 35 |
700 | 1 | _ | |a Aleksandrova, Krasimira |b 36 |
773 | _ | _ | |a 10.1017/S0007114519002538 |g p. 1 - 35 |0 PERI:(DE-600)2016047-1 |n 2 |p 198-208 |t British journal of nutrition |v 123 |y 2020 |x 1475-2662 |
909 | C | O | |o oai:inrepo02.dkfz.de:147318 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRIT J NUTR : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l Epidemiologie von Krebserkrankungen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|