000147387 001__ 147387
000147387 005__ 20240229123023.0
000147387 0247_ $$2doi$$a10.2337/dc19-1379
000147387 0247_ $$2pmid$$apmid:31653645
000147387 0247_ $$2ISSN$$a0149-5992
000147387 0247_ $$2ISSN$$a1935-5548
000147387 0247_ $$2altmetric$$aaltmetric:69293094
000147387 037__ $$aDKFZ-2019-02504
000147387 041__ $$aeng
000147387 082__ $$a610
000147387 1001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b0$$eFirst author$$udkfz
000147387 245__ $$aOxidatively Damaged DNA/RNA and 8-Isoprostane Levels Are Associated With the Development of Type 2 Diabetes at Older Age: Results From a Large Cohort Study.
000147387 260__ $$aAlexandria, Va.$$bAssoc.$$c2020
000147387 3367_ $$2DRIVER$$aarticle
000147387 3367_ $$2DataCite$$aOutput Types/Journal article
000147387 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636704971_5414
000147387 3367_ $$2BibTeX$$aARTICLE
000147387 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000147387 3367_ $$00$$2EndNote$$aJournal Article
000147387 500__ $$a2020 Jan;43(1):130-136#EA:C070#LA:C070#
000147387 520__ $$aOxidative stress is believed to play an important role in the pathophysiology of type 2 diabetes, but the few cohort studies that have assessed the association of oxidative stress biomarkers with type 2 diabetes incidence were small and reported inconclusive results.We examined the associations of urinary oxidized guanine/guanosine (OxGua) levels (a biomarker of DNA/RNA oxidation) and urinary 8-isoprostane levels (a biomarker of lipid peroxidation) with type 2 diabetes incidence in 7,828 individuals initially without diabetes from a population-based German cohort study with 14 years of follow-up. Hazard ratios (HRs) and 95% CIs per 1 SD were obtained using multivariable-adjusted Cox proportional hazards regression models.In the total population, weak but statistically significant associations with type 2 diabetes incidence were observed for OxGua (HR [95% CI] per 1 SD 1.05 [1.01; 1.09]) and 8-isoprostane (1.04 [1.00; 1.09]) levels. Stratified analyses showed that associations of both biomarkers with type 2 diabetes incidence were absent in the youngest age-group (50-59 years) and strongest in the oldest age-group (65-75 years) of the cohort, with HRs of OxGua levels of 1.14 (1.05; 1.23) per 1 SD and of 8-isoprostane levels of 1.22 (1.02; 1.45) per 1 SD.These results from a large cohort study support suggestions that an imbalanced redox system contributes to the development of type 2 diabetes but suggest that this association becomes clinically apparent at older ages only, possibly as a result of reduced cellular repair capacity.
000147387 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000147387 588__ $$aDataset connected to CrossRef, PubMed,
000147387 7001_ $$0P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aXuan, Yang$$b1$$udkfz
000147387 7001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGào, Xīn$$b2$$udkfz
000147387 7001_ $$0P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aAnusruti, Ankita$$b3$$udkfz
000147387 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$eLast author$$udkfz
000147387 773__ $$0PERI:(DE-600)1490520-6$$a10.2337/dc19-1379$$gp. dc191379 -$$n1$$p130-136$$tDiabetes care$$v43$$x1935-5548$$y2020
000147387 909CO $$ooai:inrepo02.dkfz.de:147387$$pVDB
000147387 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000147387 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000147387 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000147387 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000147387 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000147387 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000147387 9141_ $$y2020
000147387 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000147387 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000147387 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000147387 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIABETES CARE : 2017
000147387 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000147387 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000147387 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000147387 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000147387 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000147387 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000147387 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000147387 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000147387 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000147387 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bDIABETES CARE : 2017
000147387 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147387 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147387 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147387 980__ $$ajournal
000147387 980__ $$aVDB
000147387 980__ $$aI:(DE-He78)C070-20160331
000147387 980__ $$aUNRESTRICTED