001     147392
005     20240229121830.0
024 7 _ |a 10.1038/s41467-019-12868-1
|2 doi
024 7 _ |a pmid:31649258
|2 pmid
024 7 _ |a pmc:PMC6813348
|2 pmc
024 7 _ |a altmetric:69217629
|2 altmetric
037 _ _ |a DKFZ-2019-02509
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Ho, Chi-Ting
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis.
260 _ _ |a [London]
|c 2019
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582279303_27303
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance
520 _ _ |a Maintenance of cellular proteostasis is achieved by a multi-layered quality control network, which counteracts the accumulation of misfolded proteins by refolding and degradation pathways. The organized sequestration of misfolded proteins, actively promoted by cellular sequestrases, represents a third strategy of quality control. Here we determine the role of sequestration within the proteostasis network in Saccharomyces cerevisiae and the mechanism by which it occurs. The Hsp42 and Btn2 sequestrases are functionally intertwined with the refolding activity of the Hsp70 system. Sequestration of misfolded proteins by Hsp42 and Btn2 prevents proteostasis collapse and viability loss in cells with limited Hsp70 capacity, likely by shielding Hsp70 from misfolded protein overload. Btn2 has chaperone and sequestrase activity and shares features with small heat shock proteins. During stress recovery Btn2 recruits the Hsp70-Hsp104 disaggregase by directly interacting with the Hsp70 co-chaperone Sis1, thereby shunting sequestered proteins to the refolding pathway.
536 _ _ |a 321 - Basic Concepts (POF3-321)
|0 G:(DE-HGF)POF3-321
|c POF3-321
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Grousl, Tomas
|0 P:(DE-He78)8460e258e40e0b1a43855801464c10c4
|b 1
700 1 _ |a Shatz, Oren
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jawed, Areeb
|0 P:(DE-He78)4cc237811a741e11498ddb8e26425e7d
|b 3
|u dkfz
700 1 _ |a Ruger-Herreros, Carmen
|0 P:(DE-He78)b86fb9132fe237d0fe4abcb00029175f
|b 4
|u dkfz
700 1 _ |a Semmelink, Marije
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zahn, Regina
|0 0000-0002-6703-6169
|b 6
700 1 _ |a Richter, Karsten
|0 P:(DE-He78)027fe772631b4a2d7a45c439cdd75ff2
|b 7
|u dkfz
700 1 _ |a Bukau, Bernd
|0 P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476
|b 8
|u dkfz
700 1 _ |a Mogk, Axel
|0 P:(DE-HGF)0
|b 9
|e Last author
773 _ _ |a 10.1038/s41467-019-12868-1
|g Vol. 10, no. 1, p. 4851
|0 PERI:(DE-600)2553671-0
|n 1
|p 4851
|t Nature Communications
|v 10
|y 2019
|x 2041-1723
909 C O |p VDB
|o oai:inrepo02.dkfz.de:147392
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8460e258e40e0b1a43855801464c10c4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)4cc237811a741e11498ddb8e26425e7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)b86fb9132fe237d0fe4abcb00029175f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 0000-0002-6703-6169
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)027fe772631b4a2d7a45c439cdd75ff2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-321
|2 G:(DE-HGF)POF3-300
|v Basic Concepts
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2017
920 1 _ |0 I:(DE-He78)A250-20160331
|k A250
|l Chaperones and Proteases
|x 0
920 1 _ |0 I:(DE-He78)W230-20160331
|k W230
|l Elektronenmikroskopie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A250-20160331
980 _ _ |a I:(DE-He78)W230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21