000147458 001__ 147458
000147458 005__ 20240229123024.0
000147458 0247_ $$2doi$$a10.1002/1878-0261.12594
000147458 0247_ $$2pmid$$apmid:31677238
000147458 0247_ $$2ISSN$$a1574-7891
000147458 0247_ $$2ISSN$$a1878-0261
000147458 0247_ $$2altmetric$$aaltmetric:73290991
000147458 037__ $$aDKFZ-2019-02540
000147458 041__ $$aeng
000147458 082__ $$a610
000147458 1001_ $$0P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56$$aGuan, Zhong$$b0$$eFirst author$$udkfz
000147458 245__ $$aIndividual and joint performance of DNA methylation profiles, genetic risk scores and environmental risk scores for predicting breast cancer risk.
000147458 260__ $$aHoboken, NJ$$bJohn Wiley & Sons, Inc.$$c2020
000147458 3367_ $$2DRIVER$$aarticle
000147458 3367_ $$2DataCite$$aOutput Types/Journal article
000147458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601377384_28064
000147458 3367_ $$2BibTeX$$aARTICLE
000147458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000147458 3367_ $$00$$2EndNote$$aJournal Article
000147458 500__ $$a2020 Jan;14(1):42-53#EA:C070#LA:C070#
000147458 520__ $$aDNA methylation patterns in the blood, genetic risk scores (GRSs) and environmental risk factors can potentially improve breast cancer (BC) risk prediction. We assessed the individual and joint predictive performance of methylation, GRS and environmental risk factors for BC incidence in a prospective cohort study. In a cohort of 5462 women aged 50-75 from Germany, 101 BC cases were identified during 14 years of follow-up and were compared to 263 BC-free controls in a nested case-control design. Three previously suggested methylation risk scores (MRSs) based on methylation of 423, 248 and 131 cytosine-phosphate-guanine (CpG) loci, and a GRS based on the risk alleles from 269 recently identified single-nucleotide polymorphisms were constructed. Additionally, multiple previously proposed environmental risk scores (ERSs) were built based on environmental variables. Areas under the receiver operating characteristic curves (AUCs) were estimated for evaluating BC risk prediction performance. MRS and ERS showed limited accuracy in predicting BC incidence, with AUCs ranging from 0.52 to 0.56 and from 0.52 to 0.59, respectively. The GRS predicted BC incidence with a higher accuracy (AUC=0.61). Adjusted odds ratios per standard deviation increase (95% confidence interval) were 1.07 (0.84-1.36) and 1.40 (1.09-1.80) for the best performing MRS and ERS, respectively, and 1.48 (1.16-1.90) for the GRS. A full risk model combining the MRS, GRS and ERS predicted BC incidence with the highest accuracy (AUC=0.64), and might be useful for identifying high-risk populations for BC screening.
000147458 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000147458 588__ $$aDataset connected to CrossRef, PubMed,
000147458 7001_ $$0P:(DE-He78)43ea0369702f56d45fa4a32df9f49aca$$aRaut, Janhavi R$$b1$$udkfz
000147458 7001_ $$0P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aWeigl, Korbinian$$b2$$udkfz
000147458 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b3$$udkfz
000147458 7001_ $$aHolleczek, Bernd$$b4
000147458 7001_ $$0P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aZhang, Yan$$b5$$udkfz
000147458 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6$$eLast author$$udkfz
000147458 773__ $$0PERI:(DE-600)2322586-5$$a10.1002/1878-0261.12594$$gp. 1878-0261.12594$$n1$$p42-53$$tMolecular oncology$$v14$$x1878-0261$$y2020
000147458 909CO $$ooai:inrepo02.dkfz.de:147458$$pVDB
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)43ea0369702f56d45fa4a32df9f49aca$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f4e98340e600f7411886c21c7b778d36$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000147458 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000147458 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000147458 9141_ $$y2020
000147458 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL ONCOL : 2017
000147458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000147458 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000147458 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000147458 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000147458 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000147458 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000147458 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000147458 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000147458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000147458 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000147458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000147458 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000147458 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL ONCOL : 2017
000147458 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147458 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147458 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000147458 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000147458 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000147458 980__ $$ajournal
000147458 980__ $$aVDB
000147458 980__ $$aI:(DE-He78)C070-20160331
000147458 980__ $$aI:(DE-He78)C120-20160331
000147458 980__ $$aI:(DE-He78)HD01-20160331
000147458 980__ $$aUNRESTRICTED