000147498 001__ 147498
000147498 005__ 20240229123024.0
000147498 0247_ $$2doi$$a10.1080/0284186X.2019.1684558
000147498 0247_ $$2pmid$$apmid:31694437
000147498 0247_ $$2ISSN$$a0284-186X
000147498 0247_ $$2ISSN$$a1100-1704
000147498 0247_ $$2ISSN$$a1651-226X
000147498 0247_ $$2ISSN$$a1651-2499
000147498 037__ $$aDKFZ-2019-02554
000147498 041__ $$aeng
000147498 082__ $$a610
000147498 1001_ $$0P:(DE-He78)6543d0b7270cdb9756e3a953ad76beb4$$aHandrack, Josefine$$b0$$eFirst author$$udkfz
000147498 245__ $$aTowards a generalised development of synthetic CT images and assessment of their dosimetric accuracy.
000147498 260__ $$aAbingdon$$bTaylor & Francis Group$$c2020
000147498 3367_ $$2DRIVER$$aarticle
000147498 3367_ $$2DataCite$$aOutput Types/Journal article
000147498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601377169_10578
000147498 3367_ $$2BibTeX$$aARTICLE
000147498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000147498 3367_ $$00$$2EndNote$$aJournal Article
000147498 500__ $$a2020 Feb;59(2):180-187.#EA:E040#LA:E040#
000147498 520__ $$aBackground: The interest in generating 'synthetic computed tomography (CT) images' from magnetic resonance (MR) images has been increasing over the past years due to advances in MR guidance for radiotherapy. A variety of methods for synthetic CT creation have been developed, from simple bulk density assignment to complex machine learning algorithms.Material and methods: In this study, we present a general method to determine simplistic synthetic CTs and evaluate them according to their dosimetric accuracy. It separates the requirements on the MR image and the associated calculation effort to generate a synthetic CT. To evaluate the significance of the dosimetric accuracy under realistic conditions, clinically common uncertainties including position shifts and Hounsfield lookup table (HLUT) errors were simulated. To illustrate our approach, we first translated CT images from a test set of six pelvic cancer patients to relative electron density (ED) via a clinical HLUT. For each patient, seven simplified ED images (simED) were generated at different levels of complexity, ranging from one to four tissue classes. Then, dose distributions optimised on the reference ED image and the simEDs were compared to each other in terms of gamma pass rates (2 mm/2% criteria) and dose volume metrics.Results: For our test set, best results were obtained for simEDs with four tissue classes representing fat, soft tissue, air, and bone. For this simED, gamma pass rates of 99.95% (range: 99.72-100%) were achieved. The decrease in accuracy from ED simplification was smaller in this case than the influence of the uncertainty scenarios on the reference image, both for gamma pass rates and dose volume metrics.Conclusions: The presented workflow helps to determine the required complexity of synthetic CTs with respect to their dosimetric accuracy. The investigated cases showed potential simplifications, based on which the synthetic CT generation could be faster and more reproducible.
000147498 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000147498 588__ $$aDataset connected to CrossRef, PubMed,
000147498 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b1$$udkfz
000147498 7001_ $$0P:(DE-He78)8152a8881b7988677339c78fbf95ac46$$aMöhler, Christian$$b2
000147498 7001_ $$0P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23$$aBostel, Tilman$$b3$$udkfz
000147498 7001_ $$0P:(DE-He78)bf44d68f90110cc79436dbb10f477518$$aGreilich, Klaus-Steffen$$b4$$eLast author$$udkfz
000147498 773__ $$0PERI:(DE-600)1492623-4$$a10.1080/0284186X.2019.1684558$$gp. 1 - 8$$n2$$p180-187$$tActa oncologica$$v59$$x0001-6926$$y2020
000147498 909CO $$ooai:inrepo02.dkfz.de:147498$$pVDB
000147498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6543d0b7270cdb9756e3a953ad76beb4$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000147498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000147498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000147498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bf44d68f90110cc79436dbb10f477518$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000147498 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000147498 9141_ $$y2020
000147498 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000147498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000147498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000147498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA ONCOL : 2017
000147498 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000147498 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000147498 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000147498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000147498 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000147498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000147498 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000147498 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000147498 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000147498 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000147498 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000147498 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000147498 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000147498 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x1
000147498 980__ $$ajournal
000147498 980__ $$aVDB
000147498 980__ $$aI:(DE-He78)E040-20160331
000147498 980__ $$aI:(DE-He78)E050-20160331
000147498 980__ $$aUNRESTRICTED