001     147498
005     20240229123024.0
024 7 _ |a 10.1080/0284186X.2019.1684558
|2 doi
024 7 _ |a pmid:31694437
|2 pmid
024 7 _ |a 0284-186X
|2 ISSN
024 7 _ |a 1100-1704
|2 ISSN
024 7 _ |a 1651-226X
|2 ISSN
024 7 _ |a 1651-2499
|2 ISSN
037 _ _ |a DKFZ-2019-02554
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Handrack, Josefine
|0 P:(DE-He78)6543d0b7270cdb9756e3a953ad76beb4
|b 0
|e First author
|u dkfz
245 _ _ |a Towards a generalised development of synthetic CT images and assessment of their dosimetric accuracy.
260 _ _ |a Abingdon
|c 2020
|b Taylor & Francis Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601377169_10578
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Feb;59(2):180-187.#EA:E040#LA:E040#
520 _ _ |a Background: The interest in generating 'synthetic computed tomography (CT) images' from magnetic resonance (MR) images has been increasing over the past years due to advances in MR guidance for radiotherapy. A variety of methods for synthetic CT creation have been developed, from simple bulk density assignment to complex machine learning algorithms.Material and methods: In this study, we present a general method to determine simplistic synthetic CTs and evaluate them according to their dosimetric accuracy. It separates the requirements on the MR image and the associated calculation effort to generate a synthetic CT. To evaluate the significance of the dosimetric accuracy under realistic conditions, clinically common uncertainties including position shifts and Hounsfield lookup table (HLUT) errors were simulated. To illustrate our approach, we first translated CT images from a test set of six pelvic cancer patients to relative electron density (ED) via a clinical HLUT. For each patient, seven simplified ED images (simED) were generated at different levels of complexity, ranging from one to four tissue classes. Then, dose distributions optimised on the reference ED image and the simEDs were compared to each other in terms of gamma pass rates (2 mm/2% criteria) and dose volume metrics.Results: For our test set, best results were obtained for simEDs with four tissue classes representing fat, soft tissue, air, and bone. For this simED, gamma pass rates of 99.95% (range: 99.72-100%) were achieved. The decrease in accuracy from ED simplification was smaller in this case than the influence of the uncertainty scenarios on the reference image, both for gamma pass rates and dose volume metrics.Conclusions: The presented workflow helps to determine the required complexity of synthetic CTs with respect to their dosimetric accuracy. The investigated cases showed potential simplifications, based on which the synthetic CT generation could be faster and more reproducible.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Bangert, Mark
|0 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
|b 1
|u dkfz
700 1 _ |a Möhler, Christian
|0 P:(DE-He78)8152a8881b7988677339c78fbf95ac46
|b 2
700 1 _ |a Bostel, Tilman
|0 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
|b 3
|u dkfz
700 1 _ |a Greilich, Klaus-Steffen
|0 P:(DE-He78)bf44d68f90110cc79436dbb10f477518
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1080/0284186X.2019.1684558
|g p. 1 - 8
|0 PERI:(DE-600)1492623-4
|n 2
|p 180-187
|t Acta oncologica
|v 59
|y 2020
|x 0001-6926
909 C O |p VDB
|o oai:inrepo02.dkfz.de:147498
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)6543d0b7270cdb9756e3a953ad76beb4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)bf44d68f90110cc79436dbb10f477518
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA ONCOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21