001     147704
005     20240229123028.0
024 7 _ |2 doi
|a 10.1093/bib/bbz136
024 7 _ |2 pmid
|a pmid:31750518
024 7 _ |2 ISSN
|a 1467-5463
024 7 _ |2 ISSN
|a 1477-4054
024 7 _ |2 altmetric
|a altmetric:71236931
037 _ _ |a DKFZ-2019-02681
041 _ _ |a eng
082 _ _ |a 004
100 1 _ |a De Bin, Riccardo
|b 0
245 _ _ |a Combining clinical and molecular data in regression prediction models: insights from a simulation study.
260 _ _ |a Oxford [u.a.]
|b Oxford University Press
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1611668287_27926
|x Review Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a 2020 Dec 1;21(6):1904-1919
520 _ _ |a Data integration, i.e. the use of different sources of information for data analysis, is becoming one of the most important topics in modern statistics. Especially in, but not limited to, biomedical applications, a relevant issue is the combination of low-dimensional (e.g. clinical data) and high-dimensional (e.g. molecular data such as gene expressions) data sources in a prediction model. Not only the different characteristics of the data, but also the complex correlation structure within and between the two data sources, pose challenging issues. In this paper, we investigate these issues via simulations, providing some useful insight into strategies to combine low- and high-dimensional data in a regression prediction model. In particular, we focus on the effect of the correlation structure on the results, while accounting for the influence of our specific choices in the design of the simulation study.
536 _ _ |0 G:(DE-HGF)POF3-313
|a 313 - Cancer risk factors and prevention (POF3-313)
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Boulesteix, Anne-Laure
|b 1
700 1 _ |0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|a Benner, Axel
|b 2
|u dkfz
700 1 _ |0 P:(DE-He78)ecb33fb615e08035fdcefcaebfdff8f0
|a Becker, Natalia
|b 3
700 1 _ |a Sauerbrei, Willi
|b 4
773 _ _ |0 PERI:(DE-600)2036055-1
|a 10.1093/bib/bbz136
|g p. bbz136
|n 6
|p 1904-1919
|t Briefings in bioinformatics
|v 21
|x 1477-4054
|y 2020
909 C O |o oai:inrepo02.dkfz.de:147704
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|a Deutsches Krebsforschungszentrum
|b 2
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)ecb33fb615e08035fdcefcaebfdff8f0
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-313
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BRIEF BIOINFORM : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b BRIEF BIOINFORM : 2017
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21