000148278 001__ 148278 000148278 005__ 20240229123030.0 000148278 0247_ $$2doi$$a10.1007/s00441-019-03129-0 000148278 0247_ $$2pmid$$apmid:31773304 000148278 0247_ $$2ISSN$$a0044-3794 000148278 0247_ $$2ISSN$$a0302-766X 000148278 0247_ $$2ISSN$$a0340-0336 000148278 0247_ $$2ISSN$$a0373-031X 000148278 0247_ $$2ISSN$$a1432-0878 000148278 0247_ $$2altmetric$$aaltmetric:71330230 000148278 037__ $$aDKFZ-2019-02844 000148278 041__ $$aeng 000148278 082__ $$a610 000148278 1001_ $$aGarcía Caballero, Gabriel$$b0 000148278 245__ $$aChicken lens development: complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ-, and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography. 000148278 260__ $$aHeidelberg$$bSpringer$$c2020 000148278 3367_ $$2DRIVER$$aarticle 000148278 3367_ $$2DataCite$$aOutput Types/Journal article 000148278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583155969_30446 000148278 3367_ $$2BibTeX$$aARTICLE 000148278 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000148278 3367_ $$00$$2EndNote$$aJournal Article 000148278 500__ $$a2020 Jan;379(1):13-35 000148278 520__ $$aThe emerging multifunctionality of galectins by specific protein-glycan/protein interactions explains the interest to determine their expression during embryogenesis. Complete network analysis of all seven chicken galectins (CGs) is presented in the course of differentiation of eye lens that originates from a single type of progenitor cell. It answers the questions on levels of expression and individual patterns of distribution. A qualitative difference occurs in the CG-1A/B paralogue pair, underscoring conspicuous divergence. Considering different cell phenotypes, lens fiber and also epithelial cells can both express the same CG, with developmental upregulation for CG-3 and CG-8. Except for expression of the lens-specific CG (C-GRIFIN), no other CG appeared to be controlled by the transcription factors L-Maf and Pax6. Studying presence and nature of binding partners for CGs, we tested labeled galectins in histochemistry and in ligand blotting. Mass spectrometric (glyco)protein identification after affinity chromatography prominently yielded four types of crystallins, N-CAM, and, in the cases of CG-3 and CG-8, N-cadherin. Should such pairing be functional in situ, it may be involved in tightly packing intracellular lens proteins and forming membrane contact as well as in gaining plasticity and stability of adhesion processes. The expression of CGs throughout embryogenesis is postulated to give meaning to spatiotemporal alterations in the local glycome. 000148278 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000148278 588__ $$aDataset connected to CrossRef, PubMed, 000148278 7001_ $$aSchmidt, Sebastian$$b1 000148278 7001_ $$aManning, Joachim C$$b2 000148278 7001_ $$0P:(DE-He78)922985ad8db0c50d65e31fed00d8aac5$$aMichalak, Malwina$$b3$$udkfz 000148278 7001_ $$aSchlötzer-Schrehardt, Ursula$$b4 000148278 7001_ $$aLudwig, Anna-Kristin$$b5 000148278 7001_ $$aKaltner, Herbert$$b6 000148278 7001_ $$aSinowatz, Fred$$b7 000148278 7001_ $$0P:(DE-He78)38b33779833838a98c2a241ce465fb07$$aSchnölzer, Martina$$b8 000148278 7001_ $$aKopitz, Jürgen$$b9 000148278 7001_ $$aGabius, Hans-Joachim$$b10 000148278 773__ $$0PERI:(DE-600)1458496-7$$a10.1007/s00441-019-03129-0$$n1$$p13-35$$tCell & tissue research$$v379$$x1432-0878$$y2020 000148278 909CO $$ooai:inrepo02.dkfz.de:148278$$pVDB 000148278 9101_ $$0I:(DE-HGF)0$$6P:(DE-He78)922985ad8db0c50d65e31fed00d8aac5$$aExternal Institute$$b3$$kExtern 000148278 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)38b33779833838a98c2a241ce465fb07$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ 000148278 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000148278 9141_ $$y2020 000148278 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000148278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL TISSUE RES : 2017 000148278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000148278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000148278 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000148278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000148278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000148278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000148278 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000148278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000148278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000148278 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000148278 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000148278 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000148278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000148278 9201_ $$0I:(DE-He78)B100-20160331$$kB100$$lFunktionelle Proteomanalyse$$x0 000148278 980__ $$ajournal 000148278 980__ $$aVDB 000148278 980__ $$aI:(DE-He78)B100-20160331 000148278 980__ $$aUNRESTRICTED