000148278 001__ 148278
000148278 005__ 20240229123030.0
000148278 0247_ $$2doi$$a10.1007/s00441-019-03129-0
000148278 0247_ $$2pmid$$apmid:31773304
000148278 0247_ $$2ISSN$$a0044-3794
000148278 0247_ $$2ISSN$$a0302-766X
000148278 0247_ $$2ISSN$$a0340-0336
000148278 0247_ $$2ISSN$$a0373-031X
000148278 0247_ $$2ISSN$$a1432-0878
000148278 0247_ $$2altmetric$$aaltmetric:71330230
000148278 037__ $$aDKFZ-2019-02844
000148278 041__ $$aeng
000148278 082__ $$a610
000148278 1001_ $$aGarcía Caballero, Gabriel$$b0
000148278 245__ $$aChicken lens development: complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ-, and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography.
000148278 260__ $$aHeidelberg$$bSpringer$$c2020
000148278 3367_ $$2DRIVER$$aarticle
000148278 3367_ $$2DataCite$$aOutput Types/Journal article
000148278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583155969_30446
000148278 3367_ $$2BibTeX$$aARTICLE
000148278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148278 3367_ $$00$$2EndNote$$aJournal Article
000148278 500__ $$a2020 Jan;379(1):13-35
000148278 520__ $$aThe emerging multifunctionality of galectins by specific protein-glycan/protein interactions explains the interest to determine their expression during embryogenesis. Complete network analysis of all seven chicken galectins (CGs) is presented in the course of differentiation of eye lens that originates from a single type of progenitor cell. It answers the questions on levels of expression and individual patterns of distribution. A qualitative difference occurs in the CG-1A/B paralogue pair, underscoring conspicuous divergence. Considering different cell phenotypes, lens fiber and also epithelial cells can both express the same CG, with developmental upregulation for CG-3 and CG-8. Except for expression of the lens-specific CG (C-GRIFIN), no other CG appeared to be controlled by the transcription factors L-Maf and Pax6. Studying presence and nature of binding partners for CGs, we tested labeled galectins in histochemistry and in ligand blotting. Mass spectrometric (glyco)protein identification after affinity chromatography prominently yielded four types of crystallins, N-CAM, and, in the cases of CG-3 and CG-8, N-cadherin. Should such pairing be functional in situ, it may be involved in tightly packing intracellular lens proteins and forming membrane contact as well as in gaining plasticity and stability of adhesion processes. The expression of CGs throughout embryogenesis is postulated to give meaning to spatiotemporal alterations in the local glycome.
000148278 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000148278 588__ $$aDataset connected to CrossRef, PubMed,
000148278 7001_ $$aSchmidt, Sebastian$$b1
000148278 7001_ $$aManning, Joachim C$$b2
000148278 7001_ $$0P:(DE-He78)922985ad8db0c50d65e31fed00d8aac5$$aMichalak, Malwina$$b3$$udkfz
000148278 7001_ $$aSchlötzer-Schrehardt, Ursula$$b4
000148278 7001_ $$aLudwig, Anna-Kristin$$b5
000148278 7001_ $$aKaltner, Herbert$$b6
000148278 7001_ $$aSinowatz, Fred$$b7
000148278 7001_ $$0P:(DE-He78)38b33779833838a98c2a241ce465fb07$$aSchnölzer, Martina$$b8
000148278 7001_ $$aKopitz, Jürgen$$b9
000148278 7001_ $$aGabius, Hans-Joachim$$b10
000148278 773__ $$0PERI:(DE-600)1458496-7$$a10.1007/s00441-019-03129-0$$n1$$p13-35$$tCell & tissue research$$v379$$x1432-0878$$y2020
000148278 909CO $$ooai:inrepo02.dkfz.de:148278$$pVDB
000148278 9101_ $$0I:(DE-HGF)0$$6P:(DE-He78)922985ad8db0c50d65e31fed00d8aac5$$aExternal Institute$$b3$$kExtern
000148278 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)38b33779833838a98c2a241ce465fb07$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000148278 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000148278 9141_ $$y2020
000148278 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000148278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL TISSUE RES : 2017
000148278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148278 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000148278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000148278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000148278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148278 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000148278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148278 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000148278 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000148278 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000148278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000148278 9201_ $$0I:(DE-He78)B100-20160331$$kB100$$lFunktionelle Proteomanalyse$$x0
000148278 980__ $$ajournal
000148278 980__ $$aVDB
000148278 980__ $$aI:(DE-He78)B100-20160331
000148278 980__ $$aUNRESTRICTED