000148282 001__ 148282
000148282 005__ 20240229112700.0
000148282 0247_ $$2doi$$a10.1186/s13048-019-0591-4
000148282 0247_ $$2pmid$$apmid:31771659
000148282 0247_ $$2pmc$$apmc:PMC6878636
000148282 0247_ $$2altmetric$$aaltmetric:71486573
000148282 037__ $$aDKFZ-2019-02848
000148282 041__ $$aeng
000148282 082__ $$a610
000148282 1001_ $$00000-0002-4526-2181$$aSasamoto, Naoko$$b0
000148282 245__ $$aDevelopment and validation of circulating CA125 prediction models in postmenopausal women.
000148282 260__ $$aLondon$$bBioMed Central$$c2019
000148282 3367_ $$2DRIVER$$aarticle
000148282 3367_ $$2DataCite$$aOutput Types/Journal article
000148282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575553050_25384
000148282 3367_ $$2BibTeX$$aARTICLE
000148282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148282 3367_ $$00$$2EndNote$$aJournal Article
000148282 520__ $$aCancer Antigen 125 (CA125) is currently the best available ovarian cancer screening biomarker. However, CA125 has been limited by low sensitivity and specificity in part due to normal variation between individuals. Personal characteristics that influence CA125 could be used to improve its performance as screening biomarker.We developed and validated linear and dichotomous (≥35 U/mL) circulating CA125 prediction models in postmenopausal women without ovarian cancer who participated in one of five large population-based studies: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO, n = 26,981), European Prospective Investigation into Cancer and Nutrition (EPIC, n = 861), the Nurses' Health Studies (NHS/NHSII, n = 81), and the New England Case Control Study (NEC, n = 923). The prediction models were developed using stepwise regression in PLCO and validated in EPIC, NHS/NHSII and NEC.The linear CA125 prediction model, which included age, race, body mass index (BMI), smoking status and duration, parity, hysterectomy, age at menopause, and duration of hormone therapy (HT), explained 5% of the total variance of CA125. The correlation between measured and predicted CA125 was comparable in PLCO testing dataset (r = 0.18) and external validation datasets (r = 0.14). The dichotomous CA125 prediction model included age, race, BMI, smoking status and duration, hysterectomy, time since menopause, and duration of HT with AUC of 0.64 in PLCO and 0.80 in validation dataset.The linear prediction model explained a small portion of the total variability of CA125, suggesting the need to identify novel predictors of CA125. The dichotomous prediction model showed moderate discriminatory performance which validated well in independent dataset. Our dichotomous model could be valuable in identifying healthy women who may have elevated CA125 levels, which may contribute to reducing false positive tests using CA125 as screening biomarker.
000148282 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000148282 588__ $$aDataset connected to CrossRef, PubMed,
000148282 7001_ $$aBabic, Ana$$b1
000148282 7001_ $$aRosner, Bernard A$$b2
000148282 7001_ $$0P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aFortner, Renée T$$b3$$udkfz
000148282 7001_ $$aVitonis, Allison F$$b4
000148282 7001_ $$aYamamoto, Hidemi$$b5
000148282 7001_ $$aFichorova, Raina N$$b6
000148282 7001_ $$aTitus, Linda J$$b7
000148282 7001_ $$aTjønneland, Anne$$b8
000148282 7001_ $$aHansen, Louise$$b9
000148282 7001_ $$aKvaskoff, Marina$$b10
000148282 7001_ $$aFournier, Agnès$$b11
000148282 7001_ $$aMancini, Francesca Romana$$b12
000148282 7001_ $$aBoeing, Heiner$$b13
000148282 7001_ $$aTrichopoulou, Antonia$$b14
000148282 7001_ $$aPeppa, Eleni$$b15
000148282 7001_ $$aKarakatsani, Anna$$b16
000148282 7001_ $$aPalli, Domenico$$b17
000148282 7001_ $$aGrioni, Sara$$b18
000148282 7001_ $$aMattiello, Amalia$$b19
000148282 7001_ $$aTumino, Rosario$$b20
000148282 7001_ $$aFiano, Valentina$$b21
000148282 7001_ $$aOnland-Moret, N Charlotte$$b22
000148282 7001_ $$aWeiderpass, Elisabete$$b23
000148282 7001_ $$aGram, Inger T$$b24
000148282 7001_ $$aQuirós, J Ramón$$b25
000148282 7001_ $$aLujan-Barroso, Leila$$b26
000148282 7001_ $$aSánchez, Maria-Jose$$b27
000148282 7001_ $$aColorado-Yohar, Sandra$$b28
000148282 7001_ $$aBarricarte, Aurelio$$b29
000148282 7001_ $$aAmiano, Pilar$$b30
000148282 7001_ $$aIdahl, Annika$$b31
000148282 7001_ $$aLundin, Eva$$b32
000148282 7001_ $$aSartor, Hanna$$b33
000148282 7001_ $$aKhaw, Kay-Tee$$b34
000148282 7001_ $$aKey, Timothy J$$b35
000148282 7001_ $$aMuller, David$$b36
000148282 7001_ $$aRiboli, Elio$$b37
000148282 7001_ $$aGunter, Marc$$b38
000148282 7001_ $$aDossus, Laure$$b39
000148282 7001_ $$aTrabert, Britton$$b40
000148282 7001_ $$aWentzensen, Nicolas$$b41
000148282 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b42$$udkfz
000148282 7001_ $$aCramer, Daniel W$$b43
000148282 7001_ $$aTworoger, Shelley S$$b44
000148282 7001_ $$aTerry, Kathryn L$$b45
000148282 773__ $$0PERI:(DE-600)2455679-8$$a10.1186/s13048-019-0591-4$$gVol. 12, no. 1, p. 116$$n1$$p116$$tJournal of ovarian research$$v12$$x1757-2215$$y2019
000148282 909CO $$ooai:inrepo02.dkfz.de:148282$$pVDB
000148282 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000148282 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b42$$kDKFZ
000148282 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000148282 9141_ $$y2019
000148282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ OVARIAN RES : 2017
000148282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148282 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000148282 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000148282 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000148282 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000148282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000148282 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000148282 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000148282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000148282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148282 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148282 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000148282 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000148282 980__ $$ajournal
000148282 980__ $$aVDB
000148282 980__ $$aI:(DE-He78)C020-20160331
000148282 980__ $$aUNRESTRICTED