001     148282
005     20240229112700.0
024 7 _ |a 10.1186/s13048-019-0591-4
|2 doi
024 7 _ |a pmid:31771659
|2 pmid
024 7 _ |a pmc:PMC6878636
|2 pmc
024 7 _ |a altmetric:71486573
|2 altmetric
037 _ _ |a DKFZ-2019-02848
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Sasamoto, Naoko
|0 0000-0002-4526-2181
|b 0
245 _ _ |a Development and validation of circulating CA125 prediction models in postmenopausal women.
260 _ _ |a London
|c 2019
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575553050_25384
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cancer Antigen 125 (CA125) is currently the best available ovarian cancer screening biomarker. However, CA125 has been limited by low sensitivity and specificity in part due to normal variation between individuals. Personal characteristics that influence CA125 could be used to improve its performance as screening biomarker.We developed and validated linear and dichotomous (≥35 U/mL) circulating CA125 prediction models in postmenopausal women without ovarian cancer who participated in one of five large population-based studies: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO, n = 26,981), European Prospective Investigation into Cancer and Nutrition (EPIC, n = 861), the Nurses' Health Studies (NHS/NHSII, n = 81), and the New England Case Control Study (NEC, n = 923). The prediction models were developed using stepwise regression in PLCO and validated in EPIC, NHS/NHSII and NEC.The linear CA125 prediction model, which included age, race, body mass index (BMI), smoking status and duration, parity, hysterectomy, age at menopause, and duration of hormone therapy (HT), explained 5% of the total variance of CA125. The correlation between measured and predicted CA125 was comparable in PLCO testing dataset (r = 0.18) and external validation datasets (r = 0.14). The dichotomous CA125 prediction model included age, race, BMI, smoking status and duration, hysterectomy, time since menopause, and duration of HT with AUC of 0.64 in PLCO and 0.80 in validation dataset.The linear prediction model explained a small portion of the total variability of CA125, suggesting the need to identify novel predictors of CA125. The dichotomous prediction model showed moderate discriminatory performance which validated well in independent dataset. Our dichotomous model could be valuable in identifying healthy women who may have elevated CA125 levels, which may contribute to reducing false positive tests using CA125 as screening biomarker.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Babic, Ana
|b 1
700 1 _ |a Rosner, Bernard A
|b 2
700 1 _ |a Fortner, Renée T
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 3
|u dkfz
700 1 _ |a Vitonis, Allison F
|b 4
700 1 _ |a Yamamoto, Hidemi
|b 5
700 1 _ |a Fichorova, Raina N
|b 6
700 1 _ |a Titus, Linda J
|b 7
700 1 _ |a Tjønneland, Anne
|b 8
700 1 _ |a Hansen, Louise
|b 9
700 1 _ |a Kvaskoff, Marina
|b 10
700 1 _ |a Fournier, Agnès
|b 11
700 1 _ |a Mancini, Francesca Romana
|b 12
700 1 _ |a Boeing, Heiner
|b 13
700 1 _ |a Trichopoulou, Antonia
|b 14
700 1 _ |a Peppa, Eleni
|b 15
700 1 _ |a Karakatsani, Anna
|b 16
700 1 _ |a Palli, Domenico
|b 17
700 1 _ |a Grioni, Sara
|b 18
700 1 _ |a Mattiello, Amalia
|b 19
700 1 _ |a Tumino, Rosario
|b 20
700 1 _ |a Fiano, Valentina
|b 21
700 1 _ |a Onland-Moret, N Charlotte
|b 22
700 1 _ |a Weiderpass, Elisabete
|b 23
700 1 _ |a Gram, Inger T
|b 24
700 1 _ |a Quirós, J Ramón
|b 25
700 1 _ |a Lujan-Barroso, Leila
|b 26
700 1 _ |a Sánchez, Maria-Jose
|b 27
700 1 _ |a Colorado-Yohar, Sandra
|b 28
700 1 _ |a Barricarte, Aurelio
|b 29
700 1 _ |a Amiano, Pilar
|b 30
700 1 _ |a Idahl, Annika
|b 31
700 1 _ |a Lundin, Eva
|b 32
700 1 _ |a Sartor, Hanna
|b 33
700 1 _ |a Khaw, Kay-Tee
|b 34
700 1 _ |a Key, Timothy J
|b 35
700 1 _ |a Muller, David
|b 36
700 1 _ |a Riboli, Elio
|b 37
700 1 _ |a Gunter, Marc
|b 38
700 1 _ |a Dossus, Laure
|b 39
700 1 _ |a Trabert, Britton
|b 40
700 1 _ |a Wentzensen, Nicolas
|b 41
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 42
|u dkfz
700 1 _ |a Cramer, Daniel W
|b 43
700 1 _ |a Tworoger, Shelley S
|b 44
700 1 _ |a Terry, Kathryn L
|b 45
773 _ _ |a 10.1186/s13048-019-0591-4
|g Vol. 12, no. 1, p. 116
|0 PERI:(DE-600)2455679-8
|n 1
|p 116
|t Journal of ovarian research
|v 12
|y 2019
|x 1757-2215
909 C O |o oai:inrepo02.dkfz.de:148282
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 42
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J OVARIAN RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21