000148300 001__ 148300
000148300 005__ 20240229121831.0
000148300 0247_ $$2doi$$a10.3390/jcm8122075
000148300 0247_ $$2pmid$$apmid:31783601
000148300 0247_ $$2altmetric$$aaltmetric:71338958
000148300 037__ $$aDKFZ-2019-02864
000148300 041__ $$aeng
000148300 082__ $$a610
000148300 1001_ $$00000-0003-4872-6452$$aPletsch-Borba, Laura$$b0$$eFirst author
000148300 245__ $$aBiomarkers of Vascular Injury and Type 2 Diabetes: A Prospective Study, Systematic Review and Meta-Analysis.
000148300 260__ $$aBasel$$bMDPI$$c2019
000148300 3367_ $$2DRIVER$$aarticle
000148300 3367_ $$2DataCite$$aOutput Types/Journal article
000148300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627483136_3141$$xReview Article
000148300 3367_ $$2BibTeX$$aARTICLE
000148300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148300 3367_ $$00$$2EndNote$$aJournal Article
000148300 520__ $$aData on biomarkers of vascular injury and type 2 diabetes (T2D) risk from prospective studies are lacking. We evaluated seven biomarkers of vascular injury in relation to T2D. Additionally, a meta-analysis was performed. From the EPIC-Heidelberg cohort, 2224 participants were followed-up from baseline for 16 (median) years. E-Selectin, P-Selectin, intercellular adhesion molecule 3 (ICAM3), thrombomodulin, thrombopoietin, glycoprotein IIb/IIIa and fibrinogen levels were measured in baseline blood samples. The systematic review and meta-analysis included prospective studies identified through MEDLINE and Web of Science that investigated the association between mentioned biomarkers and T2D. The study population included 55% women, median age was 50 years, and 163 developed T2D. ICAM3 was associated with lower T2D risk (fully adjusted HRhighest vs. lowest tertile 0.62 (95% CI: 0.43, 0.91)), but no other studies on ICAM3 were identified. Overall, fifteen studies were included in the systematic review and meta-analysis (6,171 cases). E-Selectin was associated with higher T2D risk HRper SD: 1.34 (95% CI: 1.16, 1.54; I2 = 63%, n = 9 studies), while thrombomodulin was associated with lower risk HRper SD: 0.82 (95% CI: 0.71, 0.95; I2 = 0%, n = 2 studies). In the EPIC-Heidelberg, ICAM3 was associated with lower T2D risk. The meta-analysis showed a consistent positive association between E-Selectin and T2D. It was also suggestive of an inverse association between thrombomodulin and T2D, although further studies are needed to corroborate this finding.
000148300 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000148300 588__ $$aDataset connected to CrossRef, PubMed,
000148300 7001_ $$0P:(DE-HGF)0$$aWatzinger, Cora$$b1
000148300 7001_ $$0P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aTurzanski Fortner, Renée$$b2$$udkfz
000148300 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b3$$udkfz
000148300 7001_ $$aSchwingshackl, Lukas$$b4
000148300 7001_ $$0P:(DE-He78)b4004ee4b650b575447f59a4a0471312$$aSowah, Solomon$$b5$$udkfz
000148300 7001_ $$0P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aHüsing, Anika$$b6$$udkfz
000148300 7001_ $$0P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa$$aJohnson, Theron$$b7$$udkfz
000148300 7001_ $$aGroß, Marie-Luise$$b8
000148300 7001_ $$0P:(DE-He78)5b69eb65801a144c299d2aee312aefa8$$aGonzález Maldonado, Sandra$$b9$$udkfz
000148300 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b10$$udkfz
000148300 7001_ $$aBugert, Peter$$b11
000148300 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b12$$udkfz
000148300 7001_ $$0P:(DE-He78)9a183bfc8348c1db81a0ecf1458d0708$$aGrafetstätter, Mirja$$b13$$udkfz
000148300 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b14$$eLast author$$udkfz
000148300 773__ $$0PERI:(DE-600)2662592-1$$a10.3390/jcm8122075$$gVol. 8, no. 12, p. 2075 -$$n12$$p2075$$tJournal of Clinical Medicine$$v8$$x2077-0383$$y2019
000148300 909CO $$ooai:inrepo02.dkfz.de:148300$$pVDB
000148300 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-4872-6452$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b4004ee4b650b575447f59a4a0471312$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5b69eb65801a144c299d2aee312aefa8$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9a183bfc8348c1db81a0ecf1458d0708$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000148300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000148300 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000148300 9141_ $$y2019
000148300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CLIN MED : 2017
000148300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148300 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000148300 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000148300 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000148300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000148300 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000148300 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000148300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000148300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148300 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148300 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CLIN MED : 2017
000148300 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000148300 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000148300 980__ $$ajournal
000148300 980__ $$aVDB
000148300 980__ $$aI:(DE-He78)C020-20160331
000148300 980__ $$aI:(DE-He78)C070-20160331
000148300 980__ $$aUNRESTRICTED