Home > Publications database > Biomarkers of Vascular Injury and Type 2 Diabetes: A Prospective Study, Systematic Review and Meta-Analysis. > print |
001 | 148300 | ||
005 | 20240229121831.0 | ||
024 | 7 | _ | |a 10.3390/jcm8122075 |2 doi |
024 | 7 | _ | |a pmid:31783601 |2 pmid |
024 | 7 | _ | |a altmetric:71338958 |2 altmetric |
037 | _ | _ | |a DKFZ-2019-02864 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pletsch-Borba, Laura |0 0000-0003-4872-6452 |b 0 |e First author |
245 | _ | _ | |a Biomarkers of Vascular Injury and Type 2 Diabetes: A Prospective Study, Systematic Review and Meta-Analysis. |
260 | _ | _ | |a Basel |c 2019 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1627483136_3141 |2 PUB:(DE-HGF) |x Review Article |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Data on biomarkers of vascular injury and type 2 diabetes (T2D) risk from prospective studies are lacking. We evaluated seven biomarkers of vascular injury in relation to T2D. Additionally, a meta-analysis was performed. From the EPIC-Heidelberg cohort, 2224 participants were followed-up from baseline for 16 (median) years. E-Selectin, P-Selectin, intercellular adhesion molecule 3 (ICAM3), thrombomodulin, thrombopoietin, glycoprotein IIb/IIIa and fibrinogen levels were measured in baseline blood samples. The systematic review and meta-analysis included prospective studies identified through MEDLINE and Web of Science that investigated the association between mentioned biomarkers and T2D. The study population included 55% women, median age was 50 years, and 163 developed T2D. ICAM3 was associated with lower T2D risk (fully adjusted HRhighest vs. lowest tertile 0.62 (95% CI: 0.43, 0.91)), but no other studies on ICAM3 were identified. Overall, fifteen studies were included in the systematic review and meta-analysis (6,171 cases). E-Selectin was associated with higher T2D risk HRper SD: 1.34 (95% CI: 1.16, 1.54; I2 = 63%, n = 9 studies), while thrombomodulin was associated with lower risk HRper SD: 0.82 (95% CI: 0.71, 0.95; I2 = 0%, n = 2 studies). In the EPIC-Heidelberg, ICAM3 was associated with lower T2D risk. The meta-analysis showed a consistent positive association between E-Selectin and T2D. It was also suggestive of an inverse association between thrombomodulin and T2D, although further studies are needed to corroborate this finding. |
536 | _ | _ | |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323) |0 G:(DE-HGF)POF3-323 |c POF3-323 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Watzinger, Cora |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Turzanski Fortner, Renée |0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2 |b 2 |u dkfz |
700 | 1 | _ | |a Katzke, Verena |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |b 3 |u dkfz |
700 | 1 | _ | |a Schwingshackl, Lukas |b 4 |
700 | 1 | _ | |a Sowah, Solomon |0 P:(DE-He78)b4004ee4b650b575447f59a4a0471312 |b 5 |u dkfz |
700 | 1 | _ | |a Hüsing, Anika |0 P:(DE-He78)6519c85d61a3def7974665471b8a4f74 |b 6 |u dkfz |
700 | 1 | _ | |a Johnson, Theron |0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |b 7 |u dkfz |
700 | 1 | _ | |a Groß, Marie-Luise |b 8 |
700 | 1 | _ | |a González Maldonado, Sandra |0 P:(DE-He78)5b69eb65801a144c299d2aee312aefa8 |b 9 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 10 |u dkfz |
700 | 1 | _ | |a Bugert, Peter |b 11 |
700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 12 |u dkfz |
700 | 1 | _ | |a Grafetstätter, Mirja |0 P:(DE-He78)9a183bfc8348c1db81a0ecf1458d0708 |b 13 |u dkfz |
700 | 1 | _ | |a Kühn, Tilman |0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |b 14 |e Last author |u dkfz |
773 | _ | _ | |a 10.3390/jcm8122075 |g Vol. 8, no. 12, p. 2075 - |0 PERI:(DE-600)2662592-1 |n 12 |p 2075 |t Journal of Clinical Medicine |v 8 |y 2019 |x 2077-0383 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:148300 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 0000-0003-4872-6452 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)b4004ee4b650b575447f59a4a0471312 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)6519c85d61a3def7974665471b8a4f74 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)5b69eb65801a144c299d2aee312aefa8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)9a183bfc8348c1db81a0ecf1458d0708 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Herz-Kreislauf-Stoffwechselerkrankungen |1 G:(DE-HGF)POF3-320 |0 G:(DE-HGF)POF3-323 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Metabolic Dysfunction as Risk Factor |x 0 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CLIN MED : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CLIN MED : 2017 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|