001     148310
005     20240229123031.0
024 7 _ |a 10.1007/s00204-019-02631-2
|2 doi
024 7 _ |a pmid:31786636
|2 pmid
024 7 _ |a 0003-9446
|2 ISSN
024 7 _ |a 0340-5761
|2 ISSN
024 7 _ |a 0370-8497
|2 ISSN
024 7 _ |a 1432-0738
|2 ISSN
037 _ _ |a DKFZ-2019-02868
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 0
|e First author
|u dkfz
245 _ _ |a Modeling dose-response functions for combination treatments with log-logistic or Weibull functions.
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601365526_28911
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060# 2020 Jan;94(1):197-204
520 _ _ |a Dose-response curves of new substances in toxicology and related areas are commonly fitted using log-logistic functions. In more advanced studies, an additional interest is often how these substances will behave when applied in combination with a second substance. Here, an essential question for both design and analysis of these combination experiments is whether the resulting dose-response function will still be a member of the class of log-logistic functions, and, if so, what function parameters will result for the combined substances. Different scenarios might be considered in regard to whether a true interaction between the substances is expected, or whether the combination will simply be additive. In this paper, it is shown that the resulting function will in general not be a log-logistic function, but can be approximated very closely with one. Parameters for this approximation can be predicted from the parameters of both ingredients. Furthermore, some simple interaction structures can still be represented with a single log-logistic function. The approach can also be applied to Weibull-type dose-response functions, and similar results are obtained. Finally, the results were applied to a real data set obtained from cell culture experiments involving two cancer treatments, and the dose-response curve of a combination treatment was predicted from the properties of the singular substances.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Leibner, Alexander
|0 P:(DE-He78)5440fa6fb2af88807b6e247a507376e6
|b 1
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1007/s00204-019-02631-2
|0 PERI:(DE-600)1458459-1
|n 1
|p 197-204
|t Archives of toxicology
|v 94
|y 2020
|x 1432-0738
909 C O |p VDB
|o oai:inrepo02.dkfz.de:148310
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)5440fa6fb2af88807b6e247a507376e6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ARCH TOXICOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ARCH TOXICOL : 2017
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B310-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21