000148723 001__ 148723
000148723 005__ 20240229112707.0
000148723 0247_ $$2doi$$a10.1055/s-0039-3399579
000148723 0247_ $$2pmid$$apmid:31853911
000148723 0247_ $$2ISSN$$a0026-1270
000148723 0247_ $$2ISSN$$a2511-705X
000148723 0247_ $$2altmetric$$aaltmetric:73245354
000148723 037__ $$aDKFZ-2019-03249
000148723 041__ $$aeng
000148723 1001_ $$aKock-Schoppenhauer, Ann-Kristin$$b0
000148723 245__ $$aOne Step Away from Technology but One Step Towards Domain Experts-MDRBridge: A Template-Based ISO 11179-Compliant Metadata Processing Pipeline.
000148723 260__ $$aStuttgart$$bThieme52258$$c2019
000148723 3367_ $$2DRIVER$$aarticle
000148723 3367_ $$2DataCite$$aOutput Types/Journal article
000148723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578484780_25729
000148723 3367_ $$2BibTeX$$aARTICLE
000148723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148723 3367_ $$00$$2EndNote$$aJournal Article
000148723 500__ $$a2019 Dec;58(S 02):e72-e79
000148723 520__ $$aSecondary use of routine medical data relies on a shared understanding of given information. This understanding is achieved through metadata and their interconnections, which can be stored in metadata repositories (MDRs). The necessity of an MDR is well understood, but the local work on metadata is a time-consuming and challenging process for domain experts. To support the identification, collection, and provision of metadata in a predefined structured manner to foster consolidation. A particular focus is placed on user acceptance. We propose a software pipeline MDRBridge as a practical intermediary for metadata capture and processing, based on MDRSheet, an ISO 11179-3 compliant template using popular spreadsheet software. It serves as a practical mediator for metadata acquisition and processing in a broader pipeline. Due to the different origins of the metadata, both manual entry and automatic extractions from application systems are supported. To enable the export of collected metadata into external MDRs, a mapping of ISO 11179 to Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) was developed. MDRSheet is embedded in the processing pipeline MDRBridge and delivers metadata in the CDISC ODM format for further use in MDRs. This approach is used to interactively unify core datasets, import existing standard datasets, and automatically extract all defined data elements from source systems. The involvement of clinical domain experts improved significantly due to minimal changes within their usual work routine. A high degree of acceptance was achieved by adapting the working methods of clinical domain experts. The designed process is capable of transforming all relevant data elements according to the ISO 11179-3 format. MDRSheet is used as an intermediate format to present the information at a glance and to allow editing or supplementing by domain experts.
000148723 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000148723 588__ $$aDataset connected to CrossRef, PubMed,
000148723 7001_ $$aKroll, B.$$b1
000148723 7001_ $$0P:(DE-He78)cb62a55670ea113ffd5f01790cb14082$$aLambarki, M.$$b2$$udkfz
000148723 7001_ $$aUlrich, H.$$b3
000148723 7001_ $$0P:(DE-He78)4a22fcd37467186f708d19e4a58fa44b$$aStahl-Toyota, S.$$b4$$udkfz
000148723 7001_ $$aHabermann, J. K.$$b5
000148723 7001_ $$aDuhm-Harbeck, P.$$b6
000148723 7001_ $$aIngenerf, J.$$b7
000148723 7001_ $$0P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aLablans, Martin$$b8$$eLast author$$udkfz
000148723 773__ $$0PERI:(DE-600)2030773-1$$a10.1055/s-0039-3399579$$gp. s-0039-3399579$$nS02$$pe72-e79$$tMethods of information in medicine$$v58$$x2511-705X$$y2019
000148723 909CO $$ooai:inrepo02.dkfz.de:148723$$pVDB
000148723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cb62a55670ea113ffd5f01790cb14082$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000148723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4a22fcd37467186f708d19e4a58fa44b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000148723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000148723 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000148723 9141_ $$y2019
000148723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHOD INFORM MED : 2017
000148723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148723 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000148723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148723 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000148723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000148723 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0
000148723 9201_ $$0I:(DE-He78)E240-20160331$$kE240$$lMedizinische Informatik in der Translationalen Onkologie$$x1
000148723 980__ $$ajournal
000148723 980__ $$aVDB
000148723 980__ $$aI:(DE-He78)E260-20160331
000148723 980__ $$aI:(DE-He78)E240-20160331
000148723 980__ $$aUNRESTRICTED