001     148726
005     20240303004041.0
024 7 _ |a 10.1002/smll.201904880
|2 doi
024 7 _ |a pmid:31840408
|2 pmid
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a altmetric:124553488
|2 altmetric
037 _ _ |a DKFZ-2019-03252
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Tarakanchikova, Yana
|b 0
245 _ _ |a Biodegradable Nanocarriers Resembling Extracellular Vesicles Deliver Genetic Material with the Highest Efficiency to Various Cell Types.
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581580634_5453
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Small. 2019 Dec 16:e1904880
520 _ _ |a Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10-4 pmol of siRNA, and 1 × 10-3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Alzubi, Jamal
|b 1
700 1 _ |a Pennucci, Valentina
|b 2
700 1 _ |a Follo, Marie
|b 3
700 1 _ |a Kochergin, Boris
|b 4
700 1 _ |a Muslimov, Albert
|b 5
700 1 _ |a Skovorodkin, Ilya
|b 6
700 1 _ |a Vainio, Seppo
|b 7
700 1 _ |a Antipina, Maria N
|b 8
700 1 _ |a Atkin, Vsevolod
|b 9
700 1 _ |a Popov, Alexey
|b 10
700 1 _ |a Meglinski, Igor
|b 11
700 1 _ |a Cathomen, Toni
|b 12
700 1 _ |a Cornu, Tatjana I
|b 13
700 1 _ |a Gorin, Dmitry A
|b 14
700 1 _ |a Sukhorukov, Gleb B
|b 15
700 1 _ |a Nazarenko, Irina
|0 0000-0002-2633-1161
|b 16
773 _ _ |a 10.1002/smll.201904880
|g p. 1904880 -
|0 PERI:(DE-600)2168935-0
|p e1904880
|t Small
|v Dec
|y 2019
|x 1613-6829
909 C O |p VDB
|o oai:inrepo02.dkfz.de:148726
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 0000-0002-2633-1161
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SMALL : 2017
920 1 _ |0 I:(DE-He78)L601-20160331
|k L601
|l DKTK Freiburg
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)L601-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21