000148748 001__ 148748
000148748 005__ 20240229123033.0
000148748 0247_ $$2doi$$a10.1002/sim.8452
000148748 0247_ $$2pmid$$apmid:31863499
000148748 0247_ $$2ISSN$$a0277-6715
000148748 0247_ $$2ISSN$$a1097-0258
000148748 037__ $$aDKFZ-2019-03261
000148748 041__ $$aeng
000148748 082__ $$a610
000148748 1001_ $$0P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9$$aKrzykalla, Julia$$b0$$eFirst author$$udkfz
000148748 245__ $$aExploratory identification of predictive biomarkers in randomized trials with normal endpoints.
000148748 260__ $$aChichester [u.a.]$$bWiley$$c2020
000148748 3367_ $$2DRIVER$$aarticle
000148748 3367_ $$2DataCite$$aOutput Types/Journal article
000148748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601363836_28271
000148748 3367_ $$2BibTeX$$aARTICLE
000148748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148748 3367_ $$00$$2EndNote$$aJournal Article
000148748 500__ $$a#EA:C060#LA:C060#2020 Mar 30;39(7):923-939
000148748 520__ $$aOne of the main endeavours in present-day medicine, especially in oncological research, is to provide evidence for individual treatment decisions ('stratified medicine'). In the pursuit of optimal treatment decision rules, the identification of predictive biomarkers that modify the treatment effect is essential. Proposed methods have often been based on recursive partitioning since a wide variety of interaction patterns can be captured automatically and the results are easily interpretable. Furthermore, these methods are readily extendable to high-dimensional settings by means of ensemble learning. In this article, we present predMOB, an adaptation of the model-based recursive partitioning (MOB) for subgroup analysis approach specifically tailored to the identification of predictive factors. In a simulation study, predMOB outperforms the original MOB with respect to the number of false detections and shows to be more robust in moderately complex settings. Furthermore, we compare the results of predMOB for the application to a public data base of amyotrophic lateral sclerosis patients to those obtained from the original MOB and are able to elucidate the nature of the biomarkers' effects.
000148748 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000148748 588__ $$aDataset connected to CrossRef, PubMed,
000148748 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b1$$udkfz
000148748 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b2$$eLast author$$udkfz
000148748 773__ $$0PERI:(DE-600)1491221-1$$a10.1002/sim.8452$$n7$$p923-939$$tStatistics in medicine$$v39$$x0277-6715$$y2020
000148748 909CO $$ooai:inrepo02.dkfz.de:148748$$pVDB
000148748 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000148748 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000148748 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000148748 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000148748 9141_ $$y2020
000148748 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000148748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148748 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148748 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTAT MED : 2017
000148748 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148748 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000148748 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148748 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148748 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000148748 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000148748 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000148748 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000148748 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000148748 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000148748 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000148748 980__ $$ajournal
000148748 980__ $$aVDB
000148748 980__ $$aI:(DE-He78)C060-20160331
000148748 980__ $$aUNRESTRICTED