000148820 001__ 148820
000148820 005__ 20240229112708.0
000148820 0247_ $$2doi$$a10.3389/fgene.2019.01185
000148820 0247_ $$2pmid$$apmid:31867038
000148820 0247_ $$2pmc$$apmc:PMC6904360
000148820 0247_ $$2altmetric$$aaltmetric:73260269
000148820 037__ $$aDKFZ-2020-00012
000148820 041__ $$aeng
000148820 082__ $$a570
000148820 1001_ $$aPyczek, Joanna$$b0
000148820 245__ $$aRegulation and Role of GLI1 in Cutaneous Squamous Cell Carcinoma Pathogenesis.
000148820 260__ $$aLausanne$$bFrontiers Media$$c2019
000148820 3367_ $$2DRIVER$$aarticle
000148820 3367_ $$2DataCite$$aOutput Types/Journal article
000148820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577962037_14125
000148820 3367_ $$2BibTeX$$aARTICLE
000148820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000148820 3367_ $$00$$2EndNote$$aJournal Article
000148820 520__ $$aCutaneous squamous cell carcinoma (cSCC) is the second most common skin tumor in humans. Although current therapies are sufficient to clear the tumor in many cases, the overall risk of cSCC metastasis is still 5%. Alternative treatment options could help to overcome this situation. Here we focused on the role of the Hedgehog (HH) signaling pathway and its interplay with epidermal growth factor receptor (EGFR) signaling in cSCC. The analyses revealed that, despite lack of Sonic HH (SHH) expression, a subset of human cSCC can express GLI1, a marker for active HH signaling, within distinct tumor areas. In contrast, all tumors strongly express EGFR and the hair follicle stem cell marker SOX9 at the highly proliferative tumor-stroma interface, whereas central tumor regions with a more differentiated stratum spinosum cell type lack both EGFR and SOX9 expression. In vitro experiments indicate that activation of EGFR signaling in the human cSCC cell lines SCL-1, MET-1, and MET-4 leads to GLI1 inhibition via the MEK/ERK axis without affecting cellular proliferation. Of note, EGFR activation also inhibits cellular migration of SCL-1 and MET-4 cells. Because proliferation and migration of the cells is also not altered by a GLI1 knockdown, GLI1 is apparently not involved in processes of aggressiveness in established cSCC tumors. In contrast, our data rather suggest a negative correlation between Gli1 expression level and cSCC formation because skin of Ptch +/- mice with slightly elevated Gli1 expression levels is significantly less susceptible to chemically-induced cSCC formation compared to murine wildtype skin. Although not yet formally validated, these data open the possibility that GLI1 (and thus HH signaling) may antagonize cSCC initiation and is not involved in cSCC aggressiveness, at least in a subset of cSCC.
000148820 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000148820 588__ $$aDataset connected to CrossRef, PubMed,
000148820 7001_ $$aKhizanishvili, Natalia$$b1
000148820 7001_ $$aKuzyakova, Maria$$b2
000148820 7001_ $$aZabel, Sebastian$$b3
000148820 7001_ $$aBauer, Julia$$b4
000148820 7001_ $$aNitzki, Frauke$$b5
000148820 7001_ $$aEmmert, Steffen$$b6
000148820 7001_ $$aSchön, Michael P$$b7
000148820 7001_ $$0P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aBoukamp, Petra$$b8$$udkfz
000148820 7001_ $$aSchildhaus, Hans-Ulrich$$b9
000148820 7001_ $$aUhmann, Anja$$b10
000148820 7001_ $$aHahn, Heidi$$b11
000148820 773__ $$0PERI:(DE-600)2606823-0$$a10.3389/fgene.2019.01185$$gVol. 10, p. 1185$$p1185$$tFrontiers in genetics$$v10$$x1664-8021$$y2019
000148820 909CO $$ooai:inrepo02.dkfz.de:148820$$pVDB
000148820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000148820 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000148820 9141_ $$y2019
000148820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT GENET : 2017
000148820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000148820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000148820 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000148820 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000148820 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000148820 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000148820 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000148820 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000148820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000148820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000148820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000148820 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000148820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000148820 9201_ $$0I:(DE-He78)A110-20160331$$kA110$$lGenetik der Hautkarcinogenese$$x0
000148820 980__ $$ajournal
000148820 980__ $$aVDB
000148820 980__ $$aI:(DE-He78)A110-20160331
000148820 980__ $$aUNRESTRICTED