Home > Publications database > Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. > print |
001 | 148826 | ||
005 | 20240229123035.0 | ||
024 | 7 | _ | |a 10.1038/s41591-019-0694-x |2 doi |
024 | 7 | _ | |a pmid:31873309 |2 pmid |
024 | 7 | _ | |a 1078-8956 |2 ISSN |
024 | 7 | _ | |a 1546-170X |2 ISSN |
024 | 7 | _ | |a altmetric:73175310 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-00018 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Goswami, Sangeeta |b 0 |
245 | _ | _ | |a Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. |
260 | _ | _ | |a New York, NY |c 2020 |b Nature America Inc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1684497256_25826 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 26 (1), 39-46Jan 2020 / #EA:E055# |
520 | _ | _ | |a Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. |
536 | _ | _ | |a 315 - Imaging and radiooncology (POF3-315) |0 G:(DE-HGF)POF3-315 |c POF3-315 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Walle, Thomas |0 P:(DE-He78)51635089578f68fc9efdb61e6a760b64 |b 1 |e First author |
700 | 1 | _ | |a Cornish, Andrew E |b 2 |
700 | 1 | _ | |a Basu, Sreyashi |b 3 |
700 | 1 | _ | |a Anandhan, Swetha |b 4 |
700 | 1 | _ | |a Fernandez, Irina |b 5 |
700 | 1 | _ | |a Vence, Luis |b 6 |
700 | 1 | _ | |a Blando, Jorge |b 7 |
700 | 1 | _ | |a Zhao, Hao |b 8 |
700 | 1 | _ | |a Yadav, Shalini Singh |b 9 |
700 | 1 | _ | |a Ott, Martina |b 10 |
700 | 1 | _ | |a Kong, Ling Y |b 11 |
700 | 1 | _ | |a Heimberger, Amy B |0 0000-0002-9970-8695 |b 12 |
700 | 1 | _ | |a de Groot, John |b 13 |
700 | 1 | _ | |a Sepesi, Boris |b 14 |
700 | 1 | _ | |a Overman, Michael |b 15 |
700 | 1 | _ | |a Kopetz, Scott |b 16 |
700 | 1 | _ | |a Allison, James P |b 17 |
700 | 1 | _ | |a Pe'er, Dana |b 18 |
700 | 1 | _ | |a Sharma, Padmanee |0 0000-0003-4658-055X |b 19 |
773 | _ | _ | |a 10.1038/s41591-019-0694-x |0 PERI:(DE-600)1484517-9 |n 1 |p 39-46 |t Nature medicine |v 26 |y 2020 |x 1546-170X |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:148826 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)51635089578f68fc9efdb61e6a760b64 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Imaging and radiooncology |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MED : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b NAT MED : 2017 |
920 | 1 | _ | |0 I:(DE-He78)E055-20160331 |k E055 |l E055 KKE Molekulare Radioonkologie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)E055-20160331 |k E055 |l E055 KKE Molekulare Radioonkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E055-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|