001     148828
005     20240229123035.0
024 7 _ |a 10.1038/s41556-019-0439-6
|2 doi
024 7 _ |a pmid:31871321
|2 pmid
024 7 _ |a 1465-7392
|2 ISSN
024 7 _ |a 1476-4679
|2 ISSN
024 7 _ |a altmetric:73175394
|2 altmetric
037 _ _ |a DKFZ-2020-00020
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Baccin, Chiara
|0 0000-0003-1251-6947
|b 0
245 _ _ |a Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.
260 _ _ |a New York, NY
|c 2020
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634816177_21237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance2020 Jan;22(1):38-48#LA:A010#
520 _ _ |a The bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches. This allowed us to transcriptionally profile all major bone-marrow-resident cell types, determine their localization and clarify sources of pro-haematopoietic factors. Our data demonstrate that Cxcl12-abundant-reticular (CAR) cell subsets (Adipo-CAR and Osteo-CAR) differentially localize to sinusoidal and arteriolar surfaces, act locally as 'professional cytokine-secreting cells' and thereby establish peri-vascular micro-niches. Importantly, the three-dimensional bone-marrow organization can be accurately inferred from single-cell transcriptome data using the RNA-Magnet algorithm described here. Together, our study reveals the cellular and spatial organization of bone marrow niches and offers a systematic approach to dissect the complex organization of whole organs.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Al-Sabah, Jude
|0 P:(DE-He78)390ea815e61688e5fee33b98ed4180eb
|b 1
|e First author
700 1 _ |a Velten, Lars
|0 0000-0002-1233-5874
|b 2
700 1 _ |a Helbling, Patrick M
|0 0000-0001-6488-2805
|b 3
700 1 _ |a Grünschläger, Florian
|0 P:(DE-He78)6b879b5f67d8b3bcdffc7c01cbf8d1f1
|b 4
700 1 _ |a Hernández-Malmierca, Pablo
|0 0000-0003-4529-384X
|b 5
700 1 _ |a Nombela-Arrieta, César
|0 0000-0003-0415-259X
|b 6
700 1 _ |a Steinmetz, Lars M
|0 0000-0002-3962-2865
|b 7
700 1 _ |a Trumpp, Andreas
|0 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
|b 8
|e Last author
700 1 _ |a Haas, Simon
|0 P:(DE-He78)a5ec4e2fef99022a37a6b07c2fdd6325
|b 9
|e Last author
773 _ _ |a 10.1038/s41556-019-0439-6
|0 PERI:(DE-600)1494945-3
|n 1
|p 38-48
|t Nature cell biology
|v 22
|y 2020
|x 1476-4679
909 C O |p VDB
|o oai:inrepo02.dkfz.de:148828
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)390ea815e61688e5fee33b98ed4180eb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)6b879b5f67d8b3bcdffc7c01cbf8d1f1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 0000-0003-4529-384X
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a5ec4e2fef99022a37a6b07c2fdd6325
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CELL BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT CELL BIOL : 2017
920 2 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)V960-20160331
|k V960
|l V960 HI-Stem
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)V960-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21