001     153073
005     20240229120023.0
024 7 _ |a 10.1182/bloodadvances.2017015511
|2 doi
024 7 _ |a pmid:30622144
|2 pmid
024 7 _ |a pmc:PMC6325296
|2 pmc
024 7 _ |a 2473-9529
|2 ISSN
024 7 _ |a 2473-9537
|2 ISSN
024 7 _ |a 2476-9537
|2 ISSN
024 7 _ |a altmetric:53734873
|2 altmetric
037 _ _ |a DKFZ-2020-00155
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Nasri, Masoud
|b 0
245 _ _ |a Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response.
260 _ _ |a Washington, DC
|c 2019
|b American Society of Hematology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579004879_29186
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CRISPR/Cas9-mediated gene editing of stem cells and primary cell types has several limitations for clinical applications. The direct delivery of ribonucleoprotein (RNP) complexes consisting of Cas9 nuclease and guide RNA (gRNA) has improved DNA- and virus-free gene modifications, but it does not enable the essential enrichment of the gene-edited cells. Here, we established a protocol for the fluorescent labeling and delivery of CRISPR/Cas9-gRNA RNP in primary human hematopoietic stem and progenitor cells (HSPCs) and induced pluripotent stem cells (iPSCs). As a proof of principle for genes with low-abundance transcripts and context-dependent inducible expression, we successfully deleted growth arrest and DNA-damage-inducible β (GADD45B). We found that GADD45B is indispensable for DNA damage protection and survival in stem cells. Thus, we describe an easy and efficient protocol of DNA-free gene editing of hard-to-target transcripts and enrichment of gene-modified cells that are generally difficult to transfect.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Antigens, Differentiation
|2 NLM Chemicals
650 _ 7 |a GADD45B protein, human
|2 NLM Chemicals
650 _ 7 |a Macromolecular Substances
|2 NLM Chemicals
650 _ 7 |a RNA, Guide
|2 NLM Chemicals
650 _ 7 |a Ribonucleoproteins
|2 NLM Chemicals
700 1 _ |a Mir, Perihan
|0 P:(DE-He78)bc2e8b2ac93b02432d1816f80e26e7e8
|b 1
700 1 _ |a Dannenmann, Benjamin
|b 2
700 1 _ |a Amend, Diana
|b 3
700 1 _ |a Skroblyn, Tessa
|b 4
700 1 _ |a Xu, Yun
|b 5
700 1 _ |a Schulze-Osthoff, Klaus
|0 P:(DE-He78)3fc9ad1c0cc7a2172b86374faed6edea
|b 6
|u dkfz
700 1 _ |a Klimiankou, Maksim
|b 7
700 1 _ |a Welte, Karl
|b 8
700 1 _ |a Skokowa, Julia
|b 9
773 _ _ |a 10.1182/bloodadvances.2017015511
|g Vol. 3, no. 1, p. 63 - 71
|0 PERI:(DE-600)2876449-3
|n 1
|p 63 - 71
|t Blood advances
|v 3
|y 2019
|x 2473-9537
909 C O |o oai:inrepo02.dkfz.de:153073
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bc2e8b2ac93b02432d1816f80e26e7e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3fc9ad1c0cc7a2172b86374faed6edea
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
920 1 _ |0 I:(DE-He78)L801-20160331
|k L801
|l DKTK Tübingen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)L801-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21