000153108 001__ 153108
000153108 005__ 20240229123040.0
000153108 0247_ $$2doi$$a10.1038/s41596-019-0251-6
000153108 0247_ $$2pmid$$apmid:31932775
000153108 0247_ $$2ISSN$$a1750-2799
000153108 0247_ $$2ISSN$$a1754-2189
000153108 0247_ $$2altmetric$$aaltmetric:73988015
000153108 037__ $$aDKFZ-2020-00190
000153108 041__ $$aeng
000153108 082__ $$a610
000153108 1001_ $$aMaros, Máté E$$b0
000153108 245__ $$aMachine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data.
000153108 260__ $$aBasingstoke$$bNature Publishing Group$$c2020
000153108 3367_ $$2DRIVER$$aarticle
000153108 3367_ $$2DataCite$$aOutput Types/Journal article
000153108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608034350_20966
000153108 3367_ $$2BibTeX$$aARTICLE
000153108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153108 3367_ $$00$$2EndNote$$aJournal Article
000153108 500__ $$a#LA:B062#
000153108 520__ $$aMachine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data.
000153108 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000153108 588__ $$aDataset connected to CrossRef, PubMed,
000153108 7001_ $$0P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c$$aCapper, David$$b1$$udkfz
000153108 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David T W$$b2$$udkfz
000153108 7001_ $$0P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc$$aHovestadt, Volker$$b3
000153108 7001_ $$0P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$avon Deimling, Andreas$$b4$$udkfz
000153108 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b5$$udkfz
000153108 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b6$$udkfz
000153108 7001_ $$00000-0003-1317-7422$$aZucknick, Manuela$$b7
000153108 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b8$$eLast author$$udkfz
000153108 773__ $$0PERI:(DE-600)2244966-8$$a10.1038/s41596-019-0251-6$$n2$$p479-512$$tNature protocols$$v15$$x1750-2799$$y2020
000153108 909CO $$ooai:inrepo02.dkfz.de:153108$$pVDB
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000153108 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000153108 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000153108 9141_ $$y2020
000153108 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153108 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2017
000153108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000153108 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153108 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000153108 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT PROTOC : 2017
000153108 9202_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000153108 9201_ $$0I:(DE-He78)BE01-20160331$$kBE01$$lDKTK BE zentral$$x0
000153108 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000153108 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPediatric Glioma$$x2
000153108 9201_ $$0I:(DE-He78)B300-20160331$$kB300$$lKKE Neuropathologie$$x3
000153108 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x4
000153108 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x5
000153108 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x6
000153108 980__ $$ajournal
000153108 980__ $$aVDB
000153108 980__ $$aI:(DE-He78)BE01-20160331
000153108 980__ $$aI:(DE-He78)HD01-20160331
000153108 980__ $$aI:(DE-He78)B360-20160331
000153108 980__ $$aI:(DE-He78)B300-20160331
000153108 980__ $$aI:(DE-He78)B060-20160331
000153108 980__ $$aI:(DE-He78)B062-20160331
000153108 980__ $$aI:(DE-He78)C060-20160331
000153108 980__ $$aUNRESTRICTED