000153594 001__ 153594 000153594 005__ 20240229123045.0 000153594 0247_ $$2doi$$a10.1088/1361-6560/ab735e 000153594 0247_ $$2pmid$$apmid:32028273 000153594 0247_ $$2ISSN$$a0031-9155 000153594 0247_ $$2ISSN$$a1361-6560 000153594 037__ $$aDKFZ-2020-00338 000153594 041__ $$aeng 000153594 082__ $$a530 000153594 1001_ $$0P:(DE-He78)b46c11295b94a94d71c0d912fc1b858f$$aFaller, Friderike$$b0$$eFirst author 000153594 245__ $$aPre-clinical evaluation of dual-layer spectral computed tomography-based stopping power prediction for particle therapy planning at the Heidelberg Ion Beam Therapy Center. 000153594 260__ $$aBristol$$bIOP Publ.$$c2020 000153594 3367_ $$2DRIVER$$aarticle 000153594 3367_ $$2DataCite$$aOutput Types/Journal article 000153594 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635334221_24039 000153594 3367_ $$2BibTeX$$aARTICLE 000153594 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153594 3367_ $$00$$2EndNote$$aJournal Article 000153594 500__ $$a2020 Apr 24;65(9):095007#EA:E050#LA:E050# 000153594 520__ $$aAccurate beam range prediction during clinical treatment planning is key to improve targeted dose delivery in proton and heavy ion therapy. A substantial source of beam range uncertainty is the prediction of ion stopping power ratio relative to water (SPR) from an empirical calibration based on conventional X-ray computed tomography (CT) used in clinical practice today. The aim of this study was to investigate the potential of a novel spectral CT imaging technique based on a dual-layer detector-based approach to improve the SPR prediction for particle therapy treatment planning, an improvement that would minimize the beam range uncertainty and allow for reduced safety margins in the patient. Using calibrated and validated maps of electron density and effective atomic number from spectral CT data, predicted SPR values in tissue substitutes were within a mean accuracy of 0.6 % compared to measured SPR and showed substantially better agreement with measured data compared to standard CT-number-to-SPR calibration. The accuracy of SPR was not affected by CT acquisition settings, reconstruction parameters, phantom size, and type. Additionally, various spectral CT conversion algorithms were compared to determine the most accurate prediction method. Dosimetric validation of the developed method using a half-head anthropomorphic phantom in a routine-like setting indicated that SPR prediction with dual-layer spectral CT outperforms the clinical SECT standard with a range prediction improvement of 1 mm. This study demonstrated in homogeneous and heterogeneous phantoms that spectral CT is feasible for particle therapy planning to improve range estimates for high-precision particle therapy. 000153594 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000153594 588__ $$aDataset connected to CrossRef, PubMed, 000153594 7001_ $$0P:(DE-HGF)0$$aMein, Stewart$$b1 000153594 7001_ $$aAckermann, Benjamin$$b2 000153594 7001_ $$0P:(DE-HGF)0$$aDebus, Juergen$$b3 000153594 7001_ $$aStiller, Wolfram$$b4 000153594 7001_ $$0P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aMairani, Andrea$$b5 000153594 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ab735e$$n9$$p095007$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020 000153594 909CO $$ooai:inrepo02.dkfz.de:153594$$pVDB 000153594 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b46c11295b94a94d71c0d912fc1b858f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000153594 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000153594 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000153594 9101_ $$0I:(DE-HGF)0$$6P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aExternal Institute$$b5$$kExtern 000153594 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000153594 9141_ $$y2020 000153594 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000153594 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000153594 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017 000153594 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000153594 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000153594 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000153594 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000153594 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000153594 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000153594 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000153594 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000153594 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000153594 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000153594 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000153594 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0 000153594 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1 000153594 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 Translationale Radioonkologie$$x2 000153594 980__ $$ajournal 000153594 980__ $$aVDB 000153594 980__ $$aI:(DE-He78)E050-20160331 000153594 980__ $$aI:(DE-He78)HD01-20160331 000153594 980__ $$aI:(DE-He78)E210-20160331 000153594 980__ $$aUNRESTRICTED