Home > Publications database > [Socio-demographic and employment-related factors in the German National Cohort (GNC; NAKO Gesundheitsstudie)]. > print |
001 | 153631 | ||
005 | 20240229123046.0 | ||
024 | 7 | _ | |a 10.1007/s00103-020-03098-8 |2 doi |
024 | 7 | _ | |a pmid:32034444 |2 pmid |
024 | 7 | _ | |a 1436-9990 |2 ISSN |
024 | 7 | _ | |a 1437-1588 |2 ISSN |
024 | 7 | _ | |a altmetric:76065820 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-00354 |
041 | _ | _ | |a ger |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Dragano, Nico |b 0 |
245 | _ | _ | |a [Socio-demographic and employment-related factors in the German National Cohort (GNC; NAKO Gesundheitsstudie)]. |
260 | _ | _ | |a Heidelberg |c 2020 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1583757202_25846 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2020 Mar;63(3):267-278 |
520 | _ | _ | |a In epidemiologic studies, standardised measurement of socio-demographic and employment-related factors is becoming increasingly important, as variables such as gender, age, education or employment status are factors influencing health and disease risks.The article gives an overview of the scientific background and assessment of socio-demographic factors in the German National Cohort Study. In addition, the distribution of individual characteristics in the cohort as well as relationships with health-related measures are presented by way of example.The analysis is based on the data of the first half of the baseline survey (n = 101,724). On this basis, we present the distribution of key socio-demographic characteristics and analyse relationships with exemplary selected health indicators (body mass index, self-reported health) to assess the validity of socio-demographic data measurements.On average, study participants were 52.0 years old (SD = 12.4). Of the participants, 53.6% were women, 54.3% had high education, 60.1% were married and 72% were employed while 3.4% were unemployed. Well-established correlations between socio-demographic factors and health could be reproduced with the German National Cohort data. For example, low education, old age and unemployment were associated with an increased prevalence of obesity and poor self-reported health.The German National Cohort provides a comprehensive measurement of socio-demographic characteristics. Combined with a wide range of health data and the longitudinal measurements available in the future, this opens up new opportunities for health science and social epidemiological research in Germany. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Reuter, Marvin |b 1 |
700 | 1 | _ | |a Greiser, Karin Halina |0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |b 2 |u dkfz |
700 | 1 | _ | |a Becher, Heiko |b 3 |
700 | 1 | _ | |a Zeeb, Hajo |b 4 |
700 | 1 | _ | |a Mikolajczyk, Rafael |b 5 |
700 | 1 | _ | |a Kluttig, Alexander |b 6 |
700 | 1 | _ | |a Leitzmann, Michael |b 7 |
700 | 1 | _ | |a Fischer, Beate |b 8 |
700 | 1 | _ | |a Jöckel, Karl-Heinz |b 9 |
700 | 1 | _ | |a Emmel, Carina |b 10 |
700 | 1 | _ | |a Krause, Gérard |b 11 |
700 | 1 | _ | |a Castell, Stefanie |b 12 |
700 | 1 | _ | |a Damms-Machado, Antje |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Obi, Nadia |b 14 |
700 | 1 | _ | |a Schikowski, Tamara |b 15 |
700 | 1 | _ | |a Kuss, Oliver |b 16 |
700 | 1 | _ | |a Hoffmann, Wolfgang |b 17 |
700 | 1 | _ | |a Schipf, Sabine |b 18 |
700 | 1 | _ | |a Pischon, Tobias |b 19 |
700 | 1 | _ | |a Jaeschke, Lina |b 20 |
700 | 1 | _ | |a Krist, Lilian |b 21 |
700 | 1 | _ | |a Keil, Thomas |b 22 |
700 | 1 | _ | |a Lieb, Wolfgang |b 23 |
700 | 1 | _ | |a Holleczek, Bernd |0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec |b 24 |u dkfz |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 25 |u dkfz |
700 | 1 | _ | |a Wirkner, Kerstin |b 26 |
700 | 1 | _ | |a Loeffler, Markus |b 27 |
700 | 1 | _ | |a Michels, Karin B |b 28 |
700 | 1 | _ | |a Franzke, Claus-Werner |b 29 |
700 | 1 | _ | |a Peters, Annette |b 30 |
700 | 1 | _ | |a Linseisen, Jakob |b 31 |
700 | 1 | _ | |a Berger, Klaus |b 32 |
700 | 1 | _ | |a Legath, Nicole |b 33 |
700 | 1 | _ | |a Ahrens, Wolfgang |b 34 |
700 | 1 | _ | |a Lampert, Thomas |b 35 |
700 | 1 | _ | |a Schmidt, Börge |b 36 |
773 | _ | _ | |a 10.1007/s00103-020-03098-8 |0 PERI:(DE-600)1470303-8 |n 3 |p 267-278 |t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz |v 63 |y 2020 |x 1437-1588 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:153631 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 24 |6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 25 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BUNDESGESUNDHEITSBLA : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|