001     153631
005     20240229123046.0
024 7 _ |a 10.1007/s00103-020-03098-8
|2 doi
024 7 _ |a pmid:32034444
|2 pmid
024 7 _ |a 1436-9990
|2 ISSN
024 7 _ |a 1437-1588
|2 ISSN
024 7 _ |a altmetric:76065820
|2 altmetric
037 _ _ |a DKFZ-2020-00354
041 _ _ |a ger
082 _ _ |a 610
100 1 _ |a Dragano, Nico
|b 0
245 _ _ |a [Socio-demographic and employment-related factors in the German National Cohort (GNC; NAKO Gesundheitsstudie)].
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583757202_25846
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;63(3):267-278
520 _ _ |a In epidemiologic studies, standardised measurement of socio-demographic and employment-related factors is becoming increasingly important, as variables such as gender, age, education or employment status are factors influencing health and disease risks.The article gives an overview of the scientific background and assessment of socio-demographic factors in the German National Cohort Study. In addition, the distribution of individual characteristics in the cohort as well as relationships with health-related measures are presented by way of example.The analysis is based on the data of the first half of the baseline survey (n = 101,724). On this basis, we present the distribution of key socio-demographic characteristics and analyse relationships with exemplary selected health indicators (body mass index, self-reported health) to assess the validity of socio-demographic data measurements.On average, study participants were 52.0 years old (SD = 12.4). Of the participants, 53.6% were women, 54.3% had high education, 60.1% were married and 72% were employed while 3.4% were unemployed. Well-established correlations between socio-demographic factors and health could be reproduced with the German National Cohort data. For example, low education, old age and unemployment were associated with an increased prevalence of obesity and poor self-reported health.The German National Cohort provides a comprehensive measurement of socio-demographic characteristics. Combined with a wide range of health data and the longitudinal measurements available in the future, this opens up new opportunities for health science and social epidemiological research in Germany.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Reuter, Marvin
|b 1
700 1 _ |a Greiser, Karin Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 2
|u dkfz
700 1 _ |a Becher, Heiko
|b 3
700 1 _ |a Zeeb, Hajo
|b 4
700 1 _ |a Mikolajczyk, Rafael
|b 5
700 1 _ |a Kluttig, Alexander
|b 6
700 1 _ |a Leitzmann, Michael
|b 7
700 1 _ |a Fischer, Beate
|b 8
700 1 _ |a Jöckel, Karl-Heinz
|b 9
700 1 _ |a Emmel, Carina
|b 10
700 1 _ |a Krause, Gérard
|b 11
700 1 _ |a Castell, Stefanie
|b 12
700 1 _ |a Damms-Machado, Antje
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Obi, Nadia
|b 14
700 1 _ |a Schikowski, Tamara
|b 15
700 1 _ |a Kuss, Oliver
|b 16
700 1 _ |a Hoffmann, Wolfgang
|b 17
700 1 _ |a Schipf, Sabine
|b 18
700 1 _ |a Pischon, Tobias
|b 19
700 1 _ |a Jaeschke, Lina
|b 20
700 1 _ |a Krist, Lilian
|b 21
700 1 _ |a Keil, Thomas
|b 22
700 1 _ |a Lieb, Wolfgang
|b 23
700 1 _ |a Holleczek, Bernd
|0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
|b 24
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 25
|u dkfz
700 1 _ |a Wirkner, Kerstin
|b 26
700 1 _ |a Loeffler, Markus
|b 27
700 1 _ |a Michels, Karin B
|b 28
700 1 _ |a Franzke, Claus-Werner
|b 29
700 1 _ |a Peters, Annette
|b 30
700 1 _ |a Linseisen, Jakob
|b 31
700 1 _ |a Berger, Klaus
|b 32
700 1 _ |a Legath, Nicole
|b 33
700 1 _ |a Ahrens, Wolfgang
|b 34
700 1 _ |a Lampert, Thomas
|b 35
700 1 _ |a Schmidt, Börge
|b 36
773 _ _ |a 10.1007/s00103-020-03098-8
|0 PERI:(DE-600)1470303-8
|n 3
|p 267-278
|t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
|v 63
|y 2020
|x 1437-1588
909 C O |p VDB
|o oai:inrepo02.dkfz.de:153631
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BUNDESGESUNDHEITSBLA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21